A Posteriori Error Estimation for the Stochastic Collocation Finite Element Method
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Dynamic mesh adaptation on unstructured grids, by localised refinement and derefinement, is a very efficient tool for enhancing solution accuracy and optimise computational time. One of the major drawbacks however resides in the projection of the new nodes ...
In this work we provide efficient numerical methods for the numerical solution of Partial Differential Equations (PDEs) and the computation of the associated outputs of interest, also in the frame of optimal control problems. With this aim, a goal-oriented ...
This paper describes the use of an a posteriori error estimator to control anisotropic mesh adaptation for computing inviscid compressible flows. The a posteriori error estimator and the coupling strategy with an anisotropic remesher are first introduced. ...
In this Note we derive a posteriori error estimates for a multiscale method, the so-called heterogeneous multiscale method, applied to elliptic homogenization problems. The multiscale method is based on a macro-to-micro formulation. The macroscopic method ...
This work proposes and analyzes an anisotropic sparse grid stochastic collocation method for solving partial differential equations with random coefficients and forcing terms ( input data of the model). The method consists of a Galerkin approximation in th ...
Society for Industrial and Applied Mathematics2008
In this paper we aim at controlling physically meaningful quantities with emphasis on environmental applications. This is carried out by an efficient numerical procedure combining the goal-oriented framework [R. Becker, R. Rannacher, An optimal control app ...
We consider the problem of ranging with impulse radio (IR) ultra-wideband (UWB) radio under dense multipaths propagation environments and additive Gaussian noise. We propose a Bayesian detection algorithm where the prior distribution of the channel follows ...
In this paper we derive two a posteriori upper bounds for the heat equation. A continuous, piecewise linear finite element discretization in space and the Crank-Nicolson method for the time discretization are used. The error due to the space discretization ...
We develop a discretization and solution technique for elliptic problems whose solutions may present strong variations, singularities, boundary layers and oscillations in localized regions. We start with a coarse finite element discretization with a mesh s ...
In this paper we propose and analyze a stochastic collocation method to solve elliptic partial differential equations with random coefficients and forcing terms ( input data of the model). The input data are assumed to depend on a finite number of random v ...
Society for Industrial and Applied Mathematics2007