**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Optimal solution and asymptotic properties of a stochastic control problem arising in sailboat trajectory optimization

Abstract

We study the optimal strategy for a sailboat to reach an upwind island under the hypothesis that the wind direction fluctuates according to a Brownian motion and the wind speed is constant. The work is motivated by a concrete problem which typically arises during sailing regattas, namely finding the best tacking strategy to reach the upwind buoy as quickly as possible. We assume that there is no loss of time when tacking. We first guess an optimal strategy and then we establish its optimality by using the dynamic programming principle. The Hamilton Jacobi Bellmann equation obtained is a parabolic PDE with Neumann boundary conditions. Since it does not admit a closed form solution, the proof of optimality involves an intricate estimate of derivatives of the value function. We explicitly provide the asymptotic shape of the value function. In order to do so, we prove a result on large time behavior for solutions to time dependent parabolic PDE using a coupling argument. In particular, a boat far from the island approaches the island at $\frac{1}{2} + \frac{\sqrt{2}}{\pi} = 95.02\%$ of the boat's speed.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (37)

Related publications (37)

Related MOOCs (7)

Optimal control

Optimal control theory is a branch of mathematical optimization that deals with finding a control for a dynamical system over a period of time such that an objective function is optimized. It has numerous applications in science, engineering and operations research. For example, the dynamical system might be a spacecraft with controls corresponding to rocket thrusters, and the objective might be to reach the moon with minimum fuel expenditure.

Neumann boundary condition

In mathematics, the Neumann (or second-type) boundary condition is a type of boundary condition, named after Carl Neumann. When imposed on an ordinary or a partial differential equation, the condition specifies the values of the derivative applied at the boundary of the domain. It is possible to describe the problem using other boundary conditions: a Dirichlet boundary condition specifies the values of the solution itself (as opposed to its derivative) on the boundary, whereas the Cauchy boundary condition, mixed boundary condition and Robin boundary condition are all different types of combinations of the Neumann and Dirichlet boundary conditions.

Wind speed

In meteorology, wind speed, or wind flow speed, is a fundamental atmospheric quantity caused by air moving from high to low pressure, usually due to changes in temperature. Wind speed is now commonly measured with an anemometer. Wind speed affects weather forecasting, aviation and maritime operations, construction projects, growth and metabolism rate of many plant species, and has countless other implications. Wind direction is usually almost parallel to isobars (and not perpendicular, as one might expect), due to Earth's rotation.

SES Swiss-Energyscope

La transition énergique suisse / Energiewende in der Schweiz

Plasma Physics: Introduction

Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.

Plasma Physics: Introduction

Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.

We study the global well-posedness and asymptotic behavior for a semilinear damped wave equation with Neumann boundary conditions, modeling a one-dimensional linearly elastic body interacting with a rigid substrate through an adhesive material. The key fea ...

Jan Sickmann Hesthaven, Niccolo' Discacciati

We propose a local, non -intrusive model order reduction technique to accurately approximate the solution of coupled multi -component parametrized systems governed by partial differential equations. Our approach is based on the approximation of the boundar ...

, ,

This work focuses on the coupling of trimmed shell patches using Isogeometric Analysis, based on higher continuity splines that seamlessly meet the C 1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackag ...