Schulze methodThe Schulze method (ˈʃʊltsə) is an electoral system developed in 1997 by Markus Schulze that selects a single winner using votes that express preferences. The method can also be used to create a sorted list of winners. The Schulze method is also known as Schwartz Sequential dropping (SSD), cloneproof Schwartz sequential dropping (CSSD), the beatpath method, beatpath winner, path voting, and path winner.
Data modelA data model is an abstract model that organizes elements of data and standardizes how they relate to one another and to the properties of real-world entities. For instance, a data model may specify that the data element representing a car be composed of a number of other elements which, in turn, represent the color and size of the car and define its owner. The corresponding professional activity is called generally data modeling or, more specifically, database design.
Majority criterionThe majority criterion is a single-winner voting system criterion, used to compare such systems. The criterion states that "if one candidate is ranked first by a majority (more than 50%) of voters, then that candidate must win". Some methods that comply with this criterion include any Condorcet method, instant-runoff voting, Bucklin voting, and plurality voting.
Condorcet methodA Condorcet method (pronkɒndɔrˈseɪ; kɔ̃dɔʁsɛ) is an election method that elects the candidate who wins a majority of the vote in every head-to-head election against each of the other candidates, that is, a candidate preferred by more voters than any others, whenever there is such a candidate. A candidate with this property, the pairwise champion or beats-all winner, is formally called the Condorcet winner. The head-to-head elections need not be done separately; a voter's choice within any given pair can be determined from the ranking.
Clustered file systemA clustered file system is a which is shared by being simultaneously mounted on multiple servers. There are several approaches to clustering, most of which do not employ a clustered file system (only direct attached storage for each node). Clustered file systems can provide features like location-independent addressing and redundancy which improve reliability or reduce the complexity of the other parts of the cluster. Parallel file systems are a type of clustered file system that spread data across multiple storage nodes, usually for redundancy or performance.
Consistency criterionA voting system is consistent if, whenever the electorate is divided (arbitrarily) into several parts and elections in those parts garner the same result, then an election of the entire electorate also garners that result. Smith calls this property separability and Woodall calls it convexity. It has been proven a ranked voting system is "consistent if and only if it is a scoring function", i.e. a positional voting system. Borda count is an example of this. The failure of the consistency criterion can be seen as an example of Simpson's paradox.
CAP theoremIn theoretical computer science, the CAP theorem, also named Brewer's theorem after computer scientist Eric Brewer, states that any distributed data store can provide only two of the following three guarantees: Consistency Every read receives the most recent write or an error. Availability Every request receives a (non-error) response, without the guarantee that it contains the most recent write. Partition tolerance The system continues to operate despite an arbitrary number of messages being dropped (or delayed) by the network between nodes.
ConsistencyIn classical deductive logic, a consistent theory is one that does not lead to a logical contradiction. The lack of contradiction can be defined in either semantic or syntactic terms. The semantic definition states that a theory is consistent if it has a model, i.e., there exists an interpretation under which all formulas in the theory are true. This is the sense used in traditional Aristotelian logic, although in contemporary mathematical logic the term satisfiable is used instead.
Bayesian information criterionIn statistics, the Bayesian information criterion (BIC) or Schwarz information criterion (also SIC, SBC, SBIC) is a criterion for model selection among a finite set of models; models with lower BIC are generally preferred. It is based, in part, on the likelihood function and it is closely related to the Akaike information criterion (AIC). When fitting models, it is possible to increase the maximum likelihood by adding parameters, but doing so may result in overfitting.
Replication (computing)Replication in computing involves sharing information so as to ensure consistency between redundant resources, such as software or hardware components, to improve reliability, fault-tolerance, or accessibility. Replication in computing can refer to: Data replication, where the same data is stored on multiple storage devices Computation replication, where the same computing task is executed many times.