**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# New Algorithmic Paradigms for Discrete Problems using Dynamical Systems and Polynomials

Abstract

Optimization is a fundamental tool in modern science. Numerous important tasks in biology, economy, physics and computer science can be cast as optimization problems. Consider the example of machine learning: recent advances have shown that even the most sophisticated tasks involving decision making, can be reduced to solving certain optimization problems. These advances however, bring several new challenges to the field of algorithm design. The first of them is related to the ever-growing size of instances, these optimization problems need to be solved for. In practice, this forces the algorithms for these problems to run in time linear or nearly linear in their input size. The second challenge is related to the emergence of new, harder and harder problems which need to be dealt with. These problems are in most cases considered computationally intractable because of complexity barriers such as NP completeness, or because of non-convexity. Therefore, efficiently computable relaxations for these problems are typically desired.

The material of this thesis is divided into two parts. In the first part we attempt to address the first challenge. The recent tremendous progress in developing fast algorithm for such fundamental problems as maximum flow or linear programming, demonstrate the power of continuous techniques and tools such as electrical flows, fast Laplacian solvers and interior point methods. In this thesis we study new algorithms of this type based on continuous dynamical systems inspired by the study of a slime mold Physarum polycephalum. We perform a rigorous mathematical analysis of these dynamical systems and extract from them new, fast algorithms for problems such as minimum cost flow, linear programming and basis pursuit.

In the second part of the thesis we develop new tools to approach the second challenge. Towards this, we study a very general form of discrete optimization problems and its extension to sampling and counting, capturing a host of important problems such as counting matchings in graphs, computing permanents of matrices or sampling from constrained determinantal point processes. We present a very general framework, based on polynomials, for dealing with these problems computationally. It is based, roughly, on encoding the problem structure in a multivariate polynomial and then recovering the solution by means of certain continuous relaxations. This leads to several questions on how to reason about such relaxations and how to compute them. We resolve them by relating certain analytic properties of the arising polynomials, such as the location of their roots or convexity, to the combinatorial structure of the underlying problem.

We believe that the ideas and mathematical techniques developed in this thesis are only a beginning and they will inspire more work on the use of dynamical systems and polynomials in the design of fast algorithms.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (44)

Related MOOCs (32)

Related publications (448)

Decision problem

In computability theory and computational complexity theory, a decision problem is a computational problem that can be posed as a yes–no question of the input values. An example of a decision problem is deciding by means of an algorithm whether a given natural number is prime. Another is the problem "given two numbers x and y, does x evenly divide y?". The answer is either 'yes' or 'no' depending upon the values of x and y. A method for solving a decision problem, given in the form of an algorithm, is called a decision procedure for that problem.

Optimization problem

In mathematics, computer science and economics, an optimization problem is the problem of finding the best solution from all feasible solutions. Optimization problems can be divided into two categories, depending on whether the variables are continuous or discrete: An optimization problem with discrete variables is known as a discrete optimization, in which an object such as an integer, permutation or graph must be found from a countable set.

Laguerre polynomials

In mathematics, the Laguerre polynomials, named after Edmond Laguerre (1834–1886), are solutions of Laguerre's differential equation: which is a second-order linear differential equation. This equation has nonsingular solutions only if n is a non-negative integer. Sometimes the name Laguerre polynomials is used for solutions of where n is still a non-negative integer. Then they are also named generalized Laguerre polynomials, as will be done here (alternatively associated Laguerre polynomials or, rarely, Sonine polynomials, after their inventor Nikolay Yakovlevich Sonin).

Digital Signal Processing I

Basic signal processing concepts, Fourier analysis and filters. This module can
be used as a starting point or a basic refresher in elementary DSP

Digital Signal Processing II

Adaptive signal processing, A/D and D/A. This module provides the basic
tools for adaptive filtering and a solid mathematical framework for sampling and
quantization

Digital Signal Processing III

Advanced topics: this module covers real-time audio processing (with
examples on a hardware board), image processing and communication system design.

Nikolaos Geroliminis, Claudia Bongiovanni, Mor Kaspi

This paper offers a new algorithm to efficiently optimize scheduling decisions for dial-a-ride problems (DARPs), including problem variants considering electric and autonomous vehicles (e-ADARPs). The scheduling heuristic, based on linear programming theor ...

This paper develops a fast algorithm for computing the equilibrium assignment with the perturbed utility route choice (PURC) model. Without compromise, this allows the significant advantages of the PURC model to be used in large-scale applications. We form ...

Volkan Cevher, Grigorios Chrysos, Efstratios Panteleimon Skoulakis

Cutting plane methods are a fundamental approach for solving integer linear programs (ILPs). In each iteration of such methods, additional linear constraints (cuts) are introduced to the constraint set with the aim of excluding the previous fractional opti ...

2024