Adaptive isogeometric methods with hierarchical splines: Optimality and convergence rates
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Multiscale problems, such as modelling flows through porous media or predicting the mechanical properties of composite materials, are of great interest in many scientific areas. Analytical models describing these phenomena are rarely available, and one mus ...
In this thesis we consider inverse problems involving multiscale elliptic partial differential equations. The name multiscale indicates that these models are characterized by the presence of parameters which vary on different spatial scales (macroscopic, m ...
In this paper, we introduce the hierarchical B-spline complex of discrete differential forms for arbitrary spatial dimension. This complex may be applied to the adaptive isogeometric solution of problems arising in electromagnetics and uid mechanics. We de ...
We consider an adaptive isogeometric method (AIGM) based on (truncated) hierarchical B-splines and present the study of its numerical properties. By following [10, 12, 11], optimal convergence rates of the AIGM can be proved when suitable approximation cla ...
Isogeometric analysis is a powerful paradigm which exploits the high smoothness of splines for the numerical solution of high order partial differential equations. However, the tensor-product structure of standard multivariate B-spline models is not well s ...
A novel probabilistic numerical method for quantifying the uncertainty induced by the time integration of ordinary differential equations (ODEs) is introduced. Departing from the classical strategy to randomize ODE solvers by adding a random forcing term, ...
A new numerical method based on numerical homogenization and model order reduction is introduced for the solution of multiscale inverse problems. We consider a class of elliptic problems with highly oscillatory tensors that varies on a microscopic scale. W ...
For two-dimensional (2D) time fractional diffusion equations, we construct a numerical method based on a local discontinuous Galerkin (LDG) method in space and a finite difference scheme in time. We investigate the numerical stability and convergence of th ...
This paper should be considered as an addendum to [A. Buffa and C. Giannelli, Adaptive isogeometric methods with hierarchical splines: Error estimator and convergence, Math. Models Methods Appl. Sci. 26 (2016) 1-25] and [A. Buffa and C. Giannelli, Adaptive ...
A novel probabilistic numerical method for quantifying the uncertainty induced by the time integration of ordinary differential equations (ODEs) is introduced. Departing from the classical strategy to randomize ODE solvers by adding a random forcing term, ...