Distributionally Robust Inverse Covariance Estimation: The Wasserstein Shrinkage Estimator
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The state-of-the-art methods for estimating high-dimensional covariance matrices all shrink the eigenvalues of the sample covariance matrix towards a data-insensitive shrinkage target. The underlying shrinkage transformation is either chosen heuristically ...
This thesis concerns the theory of positive-definite completions and its mutually beneficial connections to the statistics of function-valued or continuously-indexed random processes, better known as functional data analysis. In particular, it dwells upon ...
Recently, there have been multiple proposals for faster methods to calculate glare metrics, daylight glare probability (DGP) in particular. This is driven simultaneously by the lengthy times required to simulate DGP with a conventional image-based approach ...
Deep heteroscedastic regression involves jointly optimizing the mean and covariance of the predicted distribution using the negative log-likelihood. However, recent works show that this may result in sub-optimal convergence due to the challenges associated ...
This paper considers the problem of second-degree price discrimination when the type distribution is unknown or imperfectly specified by means of an ambiguity set. As robustness measure we use a performance index, equivalent to relative regret, which quant ...
Most modern image-based 6D object pose estimation methods learn to predict 2D-3D correspondences, from which the pose can be obtained using a PnP solver. Because of the non-differentiable nature of common PnP solvers, these methods are supervised via the i ...
The problem of covariance estimation for replicated surface-valued processes is examined from the functional data analysis perspective. Considerations of statistical and computational efficiency often compel the use of separability of the covariance, even ...
Elevated nitrate from human activity causes ecosystem and economic harm globally. The factors that control the spatiotemporal dynamics of riverine nitrate concentration remain difficult to describe and predict. We analyzed nitrate concentration from 4450 s ...
Functional time series is a temporally ordered sequence of not necessarily independent random curves. While the statistical analysis of such data has been traditionally carried out under the assumption of completely observed functional data, it may well ha ...
Efficient sampling of complex high-dimensional probability distributions is a central task in computational science. Machine learning methods like autoregressive neural networks, used with Markov chain Monte Carlo sampling, provide good approximations to s ...