MesonIn particle physics, a meson (ˈmiːzɒn,_ˈmɛzɒn) is a type of hadronic subatomic particle composed of an equal number of quarks and antiquarks, usually one of each, bound together by the strong interaction. Because mesons are composed of quark subparticles, they have a meaningful physical size, a diameter of roughly one femtometre (10^−15 m), which is about 0.6 times the size of a proton or neutron. All mesons are unstable, with the longest-lived lasting for only a few tenths of a nanosecond.
Eta and eta prime mesonsThe eta (_eta) and eta prime meson (_eta prime) are isosinglet mesons made of a mixture of up, down and strange quarks and their antiquarks. The charmed eta meson (_charmed eta) and bottom eta meson (_bottom eta) are similar forms of quarkonium; they have the same spin and parity as the (light) _eta defined, but are made of charm quarks and bottom quarks respectively. The top quark is too heavy to form a similar meson, due to its very fast decay. The eta was discovered in pion–nucleon collisions at the Bevatron in 1961 by Aihud Pevsner et al.
MuonA muon (ˈmjuːɒn ; from the Greek letter mu (μ) used to represent it) is an elementary particle similar to the electron, with an electric charge of −1 e and a spin of , but with a much greater mass. It is classified as a lepton. As with other leptons, the muon is not thought to be composed of any simpler particles; that is, it is a fundamental particle. The muon is an unstable subatomic particle with a mean lifetime of 2.2μs, much longer than many other subatomic particles.
B mesonIn particle physics, B mesons are mesons composed of a bottom antiquark and either an up (_B+), down (_B0), strange (_Strange B0) or charm quark (_Charmed B+). The combination of a bottom antiquark and a top quark is not thought to be possible because of the top quark's short lifetime. The combination of a bottom antiquark and a bottom quark is not a B meson, but rather bottomonium, which is something else entirely. Each B meson has an antiparticle that is composed of a bottom quark and an up (_B-), down (_AntiB0), strange (_Strange antiB0) or charm (_Charmed b-) antiquark respectively.
LHCb experimentThe LHCb (Large Hadron Collider beauty) experiment is a particle physics detector experiment collecting data at the Large Hadron Collider at CERN. LHCb is a specialized b-physics experiment, designed primarily to measure the parameters of CP violation in the interactions of b-hadrons (heavy particles containing a bottom quark). Such studies can help to explain the matter-antimatter asymmetry of the Universe. The detector is also able to perform measurements of production cross sections, exotic hadron spectroscopy, charm physics and electroweak physics in the forward region.
Rho mesonIn particle physics, a rho meson is a short-lived hadronic particle that is an isospin triplet whose three states are denoted as _Rho+, _Rho0 and _Rho-. Along with pions and omega mesons, the rho meson carries the nuclear force within the atomic nucleus. After the pions and kaons, the rho mesons are the lightest strongly interacting particle, with a mass of 775.45MeV for all three states. The rho mesons have a very short lifetime and their decay width is about 145MeV with the peculiar feature that the decay widths are not described by a Breit–Wigner form.
PionIn particle physics, a pion (or a pi meson, denoted with the Greek letter pi: _Pion) is any of three subatomic particles: _Pion0, _Pion+, and _Pion-. Each pion consists of a quark and an antiquark and is therefore a meson. Pions are the lightest mesons and, more generally, the lightest hadrons. They are unstable, with the charged pions _Pion+ and _Pion- decaying after a mean lifetime of 26.033 nanoseconds (2.6033e-8 seconds), and the neutral pion _Pion0 decaying after a much shorter lifetime of 85 attoseconds (8.
D mesonThe D mesons are the lightest particle containing charm quarks. They are often studied to gain knowledge on the weak interaction. The strange D mesons (Ds) were called "F mesons" prior to 1986. The D mesons were discovered in 1976 by the Mark I detector at the Stanford Linear Accelerator Center. Since the D mesons are the lightest mesons containing a single charm quark (or antiquark), they must change the charm (anti)quark into an (anti)quark of another type to decay.
KaonIn particle physics, a kaon (ˈkeɪ.ɒn), also called a K meson and denoted _Kaon, is any of a group of four mesons distinguished by a quantum number called strangeness. In the quark model they are understood to be bound states of a strange quark (or antiquark) and an up or down antiquark (or quark). Kaons have proved to be a copious source of information on the nature of fundamental interactions since their discovery in cosmic rays in 1947.
Vector mesonIn high energy physics, a vector meson is a meson with total spin 1 and odd parity (usually noted as JP = 1−). Vector mesons have been seen in experiments since the 1960s, and are well known for their spectroscopic pattern of masses. The vector mesons contrast with the pseudovector mesons, which also have a total spin 1 but instead have even parity. The vector and pseudovector mesons are also dissimilar in that the spectroscopy of vector mesons tends to show nearly pure states of constituent quark flavors, whereas pseudovector mesons and scalar mesons tend to be expressed as composites of mixed states.