Deep learningDeep learning is part of a broader family of machine learning methods, which is based on artificial neural networks with representation learning. The adjective "deep" in deep learning refers to the use of multiple layers in the network. Methods used can be either supervised, semi-supervised or unsupervised.
Geometric topologyIn mathematics, geometric topology is the study of manifolds and maps between them, particularly embeddings of one manifold into another. Geometric topology as an area distinct from algebraic topology may be said to have originated in the 1935 classification of lens spaces by Reidemeister torsion, which required distinguishing spaces that are homotopy equivalent but not homeomorphic. This was the origin of simple homotopy theory. The use of the term geometric topology to describe these seems to have originated rather recently.
ColliderA collider is a type of particle accelerator that brings two opposing particle beams together such that the particles collide. Colliders may either be ring accelerators or linear accelerators. Colliders are used as a research tool in particle physics by accelerating particles to very high kinetic energy and letting them impact other particles. Analysis of the byproducts of these collisions gives scientists good evidence of the structure of the subatomic world and the laws of nature governing it.
Kin selectionKin selection is a process whereby natural selection favours a trait due to its positive effects on the reproductive success of an organism's relatives, even when at a cost to the organism's own survival and reproduction. Kin selection can lead to the evolution of altruistic behaviour. Kin selection is related to the concept of inclusive fitness, which combines the number of offspring produced with the number an individual can ensure the production of by supporting others (weighted by the relatedness between individuals).
Group selectionGroup selection is a proposed mechanism of evolution in which natural selection acts at the level of the group, instead of at the level of the individual or gene. Early authors such as V. C. Wynne-Edwards and Konrad Lorenz argued that the behavior of animals could affect their survival and reproduction as groups, speaking for instance of actions for the good of the species. In the 1930s, R.A. Fisher and J.B.S.
Raw dataRaw data, also known as primary data, are data (e.g., numbers, instrument readings, figures, etc.) collected from a source. In the context of examinations, the raw data might be described as a raw score (after test scores). If a scientist sets up a computerized thermometer which records the temperature of a chemical mixture in a test tube every minute, the list of temperature readings for every minute, as printed out on a spreadsheet or viewed on a computer screen are "raw data".
Deep reinforcement learningDeep reinforcement learning (deep RL) is a subfield of machine learning that combines reinforcement learning (RL) and deep learning. RL considers the problem of a computational agent learning to make decisions by trial and error. Deep RL incorporates deep learning into the solution, allowing agents to make decisions from unstructured input data without manual engineering of the state space. Deep RL algorithms are able to take in very large inputs (e.g.
Real-time computingReal-time computing (RTC) is the computer science term for hardware and software systems subject to a "real-time constraint", for example from event to system response. Real-time programs must guarantee response within specified time constraints, often referred to as "deadlines". Real-time responses are often understood to be in the order of milliseconds, and sometimes microseconds. A system not specified as operating in real time cannot usually guarantee a response within any timeframe, although typical or expected response times may be given.
Family-wise error rateIn statistics, family-wise error rate (FWER) is the probability of making one or more false discoveries, or type I errors when performing multiple hypotheses tests. John Tukey developed in 1953 the concept of a familywise error rate as the probability of making a Type I error among a specified group, or "family," of tests. Ryan (1959) proposed the related concept of an experimentwise error rate, which is the probability of making a Type I error in a given experiment.
Q-learningQ-learning is a model-free reinforcement learning algorithm to learn the value of an action in a particular state. It does not require a model of the environment (hence "model-free"), and it can handle problems with stochastic transitions and rewards without requiring adaptations. For any finite Markov decision process (FMDP), Q-learning finds an optimal policy in the sense of maximizing the expected value of the total reward over any and all successive steps, starting from the current state.