Joint Localization and Classification of Multiple Sound Sources Using a Multi-task Neural Network
Related publications (51)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
A common pattern of progress in engineering has seen deep neural networks displacing human-designed logic. There are many advantages to this approach, divorcing decisionmaking from human oversight and intuition has costs as well. One is that deep neural ne ...
Over these last few years, the use of Artificial Neural Networks (ANNs), now often referred to as deep learning or Deep Neural Networks (DNNs), has significantly reshaped research and development in a variety of signal and information processing tasks. Whi ...
In this paper, we propose a novel temporal spiking recurrent neural network (TSRNN) to perform robust action recognition in videos. The proposed TSRNN employs a novel spiking architecture which utilizes the local discriminative features from high-confidenc ...
Language independent query-by-example spoken term detection (QbE-STD) is the problem of retrieving audio documents from an archive, which contain a spoken query provided by a user. This is usually casted as a hypothesis testing and pattern matching problem ...
Proprioceptive signals are a critical component of our ability to perform complex movements, identify our posture and adapt to environmental changes. Our movements are generated by a large number of muscles and are sensed via a myriad of different receptor ...
We propose to use neural networks for simultaneous detection and localization of multiple sound sources in human-robot interaction. In contrast to conventional signal processing techniques, neural network-based sound source localization methods require few ...
Deep neural networks have recently achieved tremen-dous success in image classification. Recent studies havehowever shown that they are easily misled into incorrectclassification decisions by adversarial examples. Adver-saries can even craft attacks by que ...
We experiment with subword segmentation approaches that are widely used to address the open vocabulary problem in the context of end-to-end automatic speech recognition (ASR). For morphologically rich languages such as German which has many rare words main ...
We present our recent progress in ultra-low-power intelligent acoustic sensing that harnesses the high power and energy efficiency of cochlea-like analog feature extraction and binarized neural network classification. Compared with conventional methods inc ...
This work studies the robustness certification problem of neural network models, which aims to find certified adversary-free regions as large as possible around data points. In contrast to the existing approaches that seek regions bounded uniformly along a ...