Publication

CCN activity and volatility of β-caryophyllene secondary organic aerosol

Athanasios Nenes
2013
Journal paper
Abstract

In a series of smog chamber experiments, the cloud condensation nuclei (CCN) activity of secondary organic aerosol (SOA) generated from ozonolysis of β-caryophyllene was characterized by determining the CCN derived hygroscopicity parameter, κCCN, from experimental data. Two types of CCN counters, operating at different temperatures, were used. The effect of semi-volatile organic compounds on the CCN activity of SOA was studied using a thermodenuder. Overall, SOA was only slightly CCN active (with κCCN in the range 0.001-0.16), and in dark experiments with no OH scavenger present, κCCN decreased when particles were sent through the thermodenuder (with a temperature up to 50 °C). SOA was generated under different experimental conditions: In some experiments, an OH scavenger (2-butanol) was added. SOA from these experiments was less CCN active than SOA produced in experiments without an OH scavenger (i.e. where OH was produced during ozonolysis). In other experiments, lights were turned on, either without or with the addition of HONO (OH source). This led to the formation of more CCN active SOA. SOA was aged up to 30 h through exposure to ozone and (in experiments with no OH scavenger present) to OH. In all experiments, the derived κCCN consistently increased with time after initial injection of β-caryophyllene, showing that chemical ageing increases the CCN activity of β-caryophyllene SOA. κCCN was also observed to depend on supersaturation, which was explained either as an evaporation artifact from semi-volatile SOA (only observed in experiments lacking light exposure) or, alternatively, by effects related to chemical composition depending on dry particle size. Using the method of Threshold Droplet Growth Analysis it was also concluded that the activation kinetics of the SOA do not differ significantly from calibration ammonium sulphate aerosol for particles aged for several hours.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (31)
Cloud condensation nuclei
Cloud condensation nuclei (CCNs), also known as cloud seeds, are small particles typically 0.2 μm, or one hundredth the size of a cloud droplet. CCNs are a unique subset of aerosols in the atmosphere on which water vapour condenses. This can affect the radiative properties of clouds and the overall atmosphere. Water requires a non-gaseous surface to make the transition from a vapour to a liquid; this process is called condensation. In the atmosphere of Earth, this surface presents itself as tiny solid or liquid particles called CCNs.
Particulates
Particulates or atmospheric particulate matter (see below for other names) are microscopic particles of solid or liquid matter suspended in the air. The term aerosol commonly refers to the particulate/air mixture, as opposed to the particulate matter alone. Sources of particulate matter can be natural or anthropogenic. They have impacts on climate and precipitation that adversely affect human health, in ways additional to direct inhalation.
Chemical kinetics
Chemical kinetics, also known as reaction kinetics, is the branch of physical chemistry that is concerned with understanding the rates of chemical reactions. It is different from chemical thermodynamics, which deals with the direction in which a reaction occurs but in itself tells nothing about its rate. Chemical kinetics includes investigations of how experimental conditions influence the speed of a chemical reaction and yield information about the reaction's mechanism and transition states, as well as the construction of mathematical models that also can describe the characteristics of a chemical reaction.
Show more
Related publications (32)

Constraining the Twomey effect from satellite observations: issues and perspectives

Athanasios Nenes

The Twomey effect describes the radiative forcing associated with a change in cloud albedo due to an increase in anthropogenic aerosol emissions. It is driven by the perturbation in cloud droplet number concentration (Delta N-d, (ant)) in liquid-water clou ...
COPERNICUS GESELLSCHAFT MBH2020

The acidity of atmospheric particles and clouds

Athanasios Nenes, Tao Wang

Acidity, defined as pH, is a central component of aqueous chemistry. In the atmosphere, the acidity of condensed phases (aerosol particles, cloud water, and fog droplets) governs the phase partitioning of semivolatile gases such as HNO3, NH3, HCl, and orga ...
2020

Evaluation of global simulations of aerosol particle and cloud condensation nuclei number, with implications for cloud droplet formation

Athanasios Nenes, Julia Schmale, Yang Yang

A total of 16 global chemistry transport models and general circulation models have participated in this study; 14 models have been evaluated with regard to their ability to reproduce the near-surface observed number concentration of aerosol particles and ...
2019
Show more