A Self-Learning Methodology for Epileptic Seizure Detection with Minimally Supervised Edge Labeling
Related publications (54)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Epilepsy is one of the most prevalent brain disorders that disrupts the lives of millions worldwide. For patients with drug-resistant seizures, there exist implantable devices capable of monitoring neural activity, promptly triggering neurostimulation to r ...
Purpose of review: To review recent advances in the field of seizure detection in ambulatory patients with epilepsy. Recent findings: Recent studies have shown that wrist or arm wearable sensors, using 3D-accelerometry, electrodermal activity or photopleth ...
Hyperdimensional (HD) computing is a novel approach to machine learning inspired by neuroscience, which uses vectors in a hyper-dimensional space to represent data and models. This approach has gained significant interest in recent years with applications ...
Epilepsy, a major neurological disease, requires careful diagnosis and treatment. However, the detection of epileptic seizures remains a significant challenge. Current clinical practice relies on expert analysis of EEG signals, a process that is time-consu ...
Epilepsy is a common chronic neurological disorder that causes recurring seizures and affects more than 50 million people worldwide. Implantable medical devices (IMDs) are regarded as effective tools to cure patients who suffer from refractory epilepsy. Se ...
Epilepsy is one of the most common neurological disorders that is characterized by recurrent and unpredictable seizures. Wearable systems can be used to detect the onset of a seizure and notify family members and emergency units for rescue. The majority of ...
2023
The terminology of neurological disorders encompasses a range of serious illnesses (e.g., epilepsy, Alzheimer's disease) leading to morbidity, disability, and stigma. Epilepsy alone affects over 50 million people worldwide, and these figures are rising as ...
EPFL2023
, ,
Human-machine interfaces (HMIs) can be used to decode a user's motor intention to control an external device. People that suffer from motor disabilities, such as spinal cord injury, can benefit from the uses of these interfaces. While many solutions can be ...
FRONTIERS MEDIA SA2023
, , , , ,
Variability is a universal feature among biological units such as neuronal cells as they enable a robust encoding of a high volume of information in neuronal circuits and prevent hyper synchronizations such as epileptic seizures. While most computational s ...
2023
, ,
Long-term monitoring of patients with epilepsy presents a challenging problem from the engineering perspective of real-time detection and wearable devices design. It requires new solutions that allow continuous unobstructed monitoring and reliable detectio ...