Dimensionality engineering of hybrid halide perovskite light absorbers
Related publications (32)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Thanks to the continuous improvement of crystalline silicon (c-Si) solar cells, largely dominating the market, photovoltaic electricity is nowadays the cheapest source of energy on the market. Yet, solar energy is far from being completely harvested, as t ...
At the current time, the world as we know it is at a crossroads; there is an urgent need to lower greenhouse gas emissions to limit the global rise in temperature. However, this is at odds with the increasing energy demands of the world's growing populatio ...
The emergence of high-efficiency photovoltaic research is undergoing intense study and is technologically desirable to meet sustainable energy and environmental demand. However, every single solar cell has a theoretical power conversion efficiency limit, a ...
Lead halide perovskite quantum dots (PQDs), also called perovskite nanocrystals, are considered as one of the most promising classes of photovoltaic materials for solar cells due to their prominent optoelectronic properties and simple preparation technique ...
Formamidinium (FA) lead halide (alpha-FAPbI(3)) perovskites are promising materials for photovoltaic applications because of their excellent light harvesting capability (absorption edge 840 nm) and long carrier diffusion length. However, it is extremely di ...
Solar energy is the most abundant energy source, harnessing solar energy holds the solution to the challenge of increasing global energy demand and reducing our dependence on fossil fuels. Photovoltaics which directly convert solar energy into electricity ...
Over the past decade, we witnessed a remarkable development of a new generation of photovoltaic technologies, in particular dyesensitized and perovskite solar cells. These systems have demonstrated potential to provide solutions for a more sustainable futu ...
Phenothiazine is a versatile scaffold frequently used in both pharmaceutical and photovoltaic applications. Still, the structural diversity within the class of phenothiazine sensitizers for dye-sensitized solar cells is minute. Substituents are found in 3, ...
The quest for lead-free light-absorbing perovskite materials has long been the target of researchers to make the 'star' material friendly to the commercial market. After a summary of different lead-free solar absorbers, we demonstrate a zero-dimensional io ...
Perovskite solar cells have become strong contenders in the arena of photovoltaics due to the stunning rise in their efficiency from 3 % to over 20 % in just seven years. In this time, numerous device architectures and thin film deposition methods have bee ...