An Overview on Principles for Energy Efficient Robot Locomotion
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Quadrupeds achieve rapid and highly adaptive locomotion owing to the coordination between their legs and other body parts such as their trunk, head, and tail, i.e. body-limb coordination. Therefore, a better understanding of the mechanism underlying body-l ...
Adapting to the ground enables stable footholds in legged locomotion by exploiting the structure of the terrain. On that account, we present a passive adaptive planar foot with three rotational degrees of freedom that is lightweight and thus suited for hig ...
Humans have a remarkable way of learning, adapting and mastering new manipulation
tasks. With the current advances in Machine Learning (ML), the promise of having
robots with such capabilities seems to be on the cusp of reality. Transferring human-level
sk ...
In this letter, we show that soft robotic hands provide a robust means of performing basic primitives of in-hand manipulation in the presence of uncertainty. We first discuss the design of a prototype hand with dexterous soft fingers capable of moving obje ...
Modular robots (MRs) consist of similar modules that can be configured into different shapes. MRs introduce a number of benefits over conventional robots specifically designed for a task. Self-reconfigurable modular robots (SRMRs) are a sub-category of MRs ...
The task of robotic mobile manipulation poses several scientific challenges that need to be addressed to execute complex manipulation tasks in unstructured environments, in which collaboration with humans might be required. Therefore, we present ALMA, a mo ...
The recent burgeoning interest in massive multiobject spectroscopy has pushed the development of massive optical fiber positioning systems. These systems rely on precise fiber placement to detect the light spectra of many stars and galaxies. One successful ...
In this paper, we propose a framework to build a memory of motion for warm-starting an optimal control solver for the locomotion task of a humanoid robot. We use HPP Loco3D, a versatile locomotion planner, to generate offline a set of dynamically consisten ...
In this thesis our research goal is to develop, study and demonstrate multifunctional multi-robot systems in mesoscale. Particularly, our goal is to study and demonstrate terrestrial multi-locomotion and collective behaviours with mesoscale robots, similar ...
Dynamic locomotion on unstructured and uneven terrain is a challenging task in legged robotics. Especially when it comes to slippery ground conditions, common state estimation and control algorithms suffer from the usual no-slip assumption. In fact, there ...