Image segmentationIn and computer vision, image segmentation is the process of partitioning a into multiple image segments, also known as image regions or image objects (sets of pixels). The goal of segmentation is to simplify and/or change the representation of an image into something that is more meaningful and easier to analyze. Image segmentation is typically used to locate objects and boundaries (lines, curves, etc.) in images. More precisely, image segmentation is the process of assigning a label to every pixel in an image such that pixels with the same label share certain characteristics.
Recurrent neural networkA recurrent neural network (RNN) is one of the two broad types of artificial neural network, characterized by direction of the flow of information between its layers. In contrast to uni-directional feedforward neural network, it is a bi-directional artificial neural network, meaning that it allows the output from some nodes to affect subsequent input to the same nodes. Their ability to use internal state (memory) to process arbitrary sequences of inputs makes them applicable to tasks such as unsegmented, connected handwriting recognition or speech recognition.
ImageAn image is a visual representation of something. An image can be a two-dimensional (2D) representation, such as a drawing, painting, or photograph, or a three-dimensional (3D) object, such as a carving or sculpture. An image may be displayed through other media, including projection on a surface, activation of electronic signals, or digital displays. Two-dimensional images can be still or animated. Still images can usually be reproduced through mechanical means, such as photography, printmaking or photocopying.
Dynamic light scatteringDynamic light scattering (DLS) is a technique in physics that can be used to determine the size distribution profile of small particles in suspension or polymers in solution. In the scope of DLS, temporal fluctuations are usually analyzed using the intensity or photon auto-correlation function (also known as photon correlation spectroscopy - PCS or quasi-elastic light scattering - QELS). In the time domain analysis, the autocorrelation function (ACF) usually decays starting from zero delay time, and faster dynamics due to smaller particles lead to faster decorrelation of scattered intensity trace.
Light scattering by particlesLight scattering by particles is the process by which small particles (e.g. ice crystals, dust, atmospheric particulates, cosmic dust, and blood cells) scatter light causing optical phenomena such as the blue color of the sky, and halos. Maxwell's equations are the basis of theoretical and computational methods describing light scattering, but since exact solutions to Maxwell's equations are only known for selected particle geometries (such as spherical), light scattering by particles is a branch of computational electromagnetics dealing with electromagnetic radiation scattering and absorption by particles.
Phase-contrast imagingPhase-contrast imaging is a method of that has a range of different applications. It measures differences in the refractive index of different materials to differentiate between structures under analysis. In conventional light microscopy, phase contrast can be employed to distinguish between structures of similar transparency, and to examine crystals on the basis of their double refraction. This has uses in biological, medical and geological science.
Image analysisImage analysis or imagery analysis is the extraction of meaningful information from s; mainly from s by means of techniques. Image analysis tasks can be as simple as reading bar coded tags or as sophisticated as identifying a person from their face. Computers are indispensable for the analysis of large amounts of data, for tasks that require complex computation, or for the extraction of quantitative information.
Artificial neural networkArtificial neural networks (ANNs, also shortened to neural networks (NNs) or neural nets) are a branch of machine learning models that are built using principles of neuronal organization discovered by connectionism in the biological neural networks constituting animal brains. An ANN is based on a collection of connected units or nodes called artificial neurons, which loosely model the neurons in a biological brain. Each connection, like the synapses in a biological brain, can transmit a signal to other neurons.
Raman spectroscopyRaman spectroscopy (ˈrɑːmən) (named after Indian physicist C. V. Raman) is a spectroscopic technique typically used to determine vibrational modes of molecules, although rotational and other low-frequency modes of systems may also be observed. Raman spectroscopy is commonly used in chemistry to provide a structural fingerprint by which molecules can be identified. Raman spectroscopy relies upon inelastic scattering of photons, known as Raman scattering.
Compton scatteringCompton scattering (also called the Compton effect) discovered by Arthur Holly Compton, is the scattering of a high frequency photon after an interaction with a charged particle, usually an electron. It results in a decrease in energy (increase in wavelength) of the photon (which may be an X-ray or gamma ray photon), called the Compton effect. Part of the energy of the photon is transferred to the recoiling particle.