Towards a supervised classification of neocortical interneuron morphologies
Related publications (33)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Intrusion detection is frequently used as a second line of defense in Mobile Ad-hoc Networks (MANETs). In this paper we examine how to properly use classification methods in intrusion detection for MANETs. In order to do so we evaluate five supervised clas ...
In many real world applications we do not have access to fully-labeled training data, but only to a list of possible labels. This is the case, e.g., when learning visual classifiers from images downloaded from the web, using just their text captions or tag ...
MIT Press2010
, , ,
Very often in change detection only few labels or even none are available. In order to perform change detection in these extreme scenarios, they can be considered as novelty detection problems, semi-supervised (SSND) if some labels are available otherwise ...
Ieee2012
,
Objective: To propose a new feature extraction method with canonical solution for multi-class Brain-Computer Interfaces (BCI). The proposed method should provide a reduced number of canonical discriminant spatial patterns (CDSP) and rank the channels sorte ...
2007
When dealing with supervised target detection, the acquisition of labeled samples is one of the most critical phases: the samples must be yet representative of the class of interest, but must also be found among a vast majority of non-target examples. More ...
2012
In many real world applications we do not have access to fully-labeled training data, but only to a list of possible labels. This is the case, e.g., when learning visual classifiers from images downloaded from the web, using just their text captions or tag ...
This paper addresses the problem of representing multimedia information under a compressed form that permits efficient classification. The semantic coding problem starts from a subspace method where dimensionality reduction is formulated as a matrix factor ...
Multiple kernel learning (MKL) aims at simultaneously learning a kernel and the associated predictor in supervised learning settings. For the support vector machine, an efficient and general multiple kernel learning algorithm, based on semi-infinite linear ...
Inverse solution allows to estimate sources that generate a given scalp EEG topography. Recently, it has been used in Brain Computer Interfaces (BCIs) to extract robust features based on the hypothesis that projection onto the source space (high dimensiona ...
In this work a new method for automatic image classification is proposed. It relies on a compact representation of images using sets of sparse binary features. This work first evaluates the Fast Retina Keypoint binary descriptor and proposes imp ...