A Gauss-Bonnet Theorem for Asymptotically Conical Manifolds and Manifolds with Conical Singularities
Related publications (110)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Bi-Jacobi fields are generalized Jacobi fields, and are used to efficiently compute approximations to Riemannian cubic splines in a Riemannian manifold M. Calculating bi-Jacobi fields is straightforward when M is a symmetric space such as bi-invariant SO(3 ...
We study the evolution equation where is the Dirichlet-Neumann operator of a decreasing family of Riemannian manifolds with boundary . We derive a lower bound for the solution of such an equation, and apply it to a quantitative density estimate for the res ...
We consider the minimization of a function defined on a Riemannian manifold M accessible only through unbiased estimates of its gradients. We develop a geometric framework to transform a sequence of slowly converging iterates generated from stochastic gradi ...
Simultaneous and proportional control of a prosthetic hand and wrist is still a controversial issue, although giant steps have lately been made in this direction. In this paper, we study the application of a novel machine learning method to the problem, wi ...
In imitation learning, multivariate Gaussians are widely used to encode robot behaviors. Such approaches do not provide the ability to properly represent end-effector orientation, as the distance metric in the space of orientations is not Euclidean. In thi ...
We prove a version of Myers-Steenrod's theorem for Finsler manifolds under the minimal regularity hypothesis. In particular we show that an isometry between C-k,C-alpha-smooth (or partially smooth) Finsler metrics, with k + alpha > 0, k is an element of N ...
We derive a central limit theorem for the mean-square of random waves in the high-frequency limit over shrinking sets. Our proof applies to any compact Riemannian manifold of arbitrary dimension, thanks to the universality of the local Weyl law. The key te ...
We consider minimizing a nonconvex, smooth function f on a Riemannian manifold M. We show that a perturbed version of Riemannian gradient descent algorithm converges to a second-order stationary point (and hence is able to escape saddle point ...
We give a generalization of toric symplectic geometry to Poisson manifolds which are symplectic away from a collection of hypersurfaces forming a normal crossing configuration. We introduce the tropical momentum map, which takes values in a generalization ...
We show that the configuration spaces of a product of parallelizable manifolds may be recovered from those of the factors as the Boardman-Vogt tensor product of right modules over the operads of little cubes of the appropriate dimension. We also discuss an ...