A Gauss-Bonnet Theorem for Asymptotically Conical Manifolds and Manifolds with Conical Singularities
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Simultaneous and proportional control of a prosthetic hand and wrist is still a controversial issue, although giant steps have lately been made in this direction. In this paper, we study the application of a novel machine learning method to the problem, wi ...
We derive a central limit theorem for the mean-square of random waves in the high-frequency limit over shrinking sets. Our proof applies to any compact Riemannian manifold of arbitrary dimension, thanks to the universality of the local Weyl law. The key te ...
In imitation learning, multivariate Gaussians are widely used to encode robot behaviors. Such approaches do not provide the ability to properly represent end-effector orientation, as the distance metric in the space of orientations is not Euclidean. In thi ...
We study the evolution equation where is the Dirichlet-Neumann operator of a decreasing family of Riemannian manifolds with boundary . We derive a lower bound for the solution of such an equation, and apply it to a quantitative density estimate for the res ...
We consider the minimization of a function defined on a Riemannian manifold M accessible only through unbiased estimates of its gradients. We develop a geometric framework to transform a sequence of slowly converging iterates generated from stochastic gradi ...
Bi-Jacobi fields are generalized Jacobi fields, and are used to efficiently compute approximations to Riemannian cubic splines in a Riemannian manifold M. Calculating bi-Jacobi fields is straightforward when M is a symmetric space such as bi-invariant SO(3 ...
We show that the configuration spaces of a product of parallelizable manifolds may be recovered from those of the factors as the Boardman-Vogt tensor product of right modules over the operads of little cubes of the appropriate dimension. We also discuss an ...
We give a generalization of toric symplectic geometry to Poisson manifolds which are symplectic away from a collection of hypersurfaces forming a normal crossing configuration. We introduce the tropical momentum map, which takes values in a generalization ...
We consider minimizing a nonconvex, smooth function f on a Riemannian manifold M. We show that a perturbed version of Riemannian gradient descent algorithm converges to a second-order stationary point (and hence is able to escape saddle point ...
We prove a version of Myers-Steenrod's theorem for Finsler manifolds under the minimal regularity hypothesis. In particular we show that an isometry between C-k,C-alpha-smooth (or partially smooth) Finsler metrics, with k + alpha > 0, k is an element of N ...