DeepFakes: a New Threat to Face Recognition? Assessment and Detection
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Video DeepFakes are fake media created with Deep Learning (DL) that manipulate a person’s expression or identity. Most current DeepFake detection methods analyze each frame independently, ignoring inconsistencies and unnatural movements between frames. Som ...
2024
, , , , ,
Deepfakes - synthetic videos generated by machine learning models - are becoming increasingly sophisticated. While they have several positive use cases, their potential for harm is also high. Deepfake production involves input from multiple engineers, maki ...
Detecting digital face manipulation in images and video has attracted extensive attention due to the potential risk to public trust. To counteract the malicious usage of such techniques, deep learning-based deepfake detection methods have been employed and ...
In the past years, deep convolutional neural networks have been pushing the frontier of face recognition (FR) techniques in both verification and identification scenarios. Despite the high accuracy, they are often criticized for lacking explainability. The ...
State-of-the-art face recognition systems require vast amounts of labeled training data. Given the priority of privacy in face recognition applications, the data is limited to celebrity web crawls, which have issues such as limited numbers of identities. O ...
Forecasting is a capability inherent in humans when navigating. Humans routinely plan their paths, considering the potential future movements of those around them. Similarly, to achieve comparable sophistication and safety, autonomous systems must embrace ...
EPFL2023
,
Recent works have identified a gap between research and practice in artificial intelligence security: threats studied in academia do not always reflect the practical use and security risks of AI. For example, while models are often studied in isolation, th ...
Detecting manipulations in facial images and video has become an increasingly popular topic in media forensics community. At the same time, deep convolutional neural networks have achieved exceptional results on deepfake detection tasks. Despite the remark ...
In recent years, the remarkable progress in facial manipulation techniques has raised social concerns due to their potential malicious usage and has received considerable attention from both industry and academia. While current deep learning-based face for ...
Despite the huge success of deep convolutional neural networks in face recognition (FR) tasks, current methods lack explainability for their predictions because of their ``black-box'' nature. In recent years, studies have been carried out to give an interp ...