Low-temperature growth of n(++)-GaN by metalorganic chemical vapor deposition to achieve low-resistivity tunnel junctions on blue light emitting diodes
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
It was about 125 years ago that the light bulb was commercialized by Thomas Edison. No doubt a brilliant invention at the time, today its low power conversion efficiency is one of the reasons why lighting in the western world has such high energy consumpti ...
The lack of appropriate substrates has delayed the realisation of devices based on III-nitrides. Currently, the heteroepitaxial growth of GaN by metal organic vapour phase epitaxy (MOVPE) produces GaN layers which, despite huge densities of dislocations, a ...
InGaN/GaN heterostructure samples were grown by molecular beam epitaxy using ammonia as a nitrogen precursor. The growth of InGaN/GaN self-assembled quantum dots was monitored in situ by reflection high energy electron diffraction intensity oscillations. A ...
We present a theoretical and experimental study of a multilayer organic light emitting device (OLED) with a partially doped emission layer. An extended version of our established "MOLED" device model is used to understand the effects of the partially doped ...
In this paper, we present a systematic study of the effect of growth parameters on the structural and optical properties of InAs quantum dot (QD) grown under Stranski-Krastanov mode by molecular beam epitaxy. The dot density is significantly reduced from 1 ...
We are progressively approaching the physical limits of microcavity LEDs (MC-LEDs) for high brightness, high efficiency LEDs. They are promising high efficiency devices and they offer the very attractive prospect of full planar fabrication process. However ...
We present a study on the improvement of the external Quantum Efficiency (QE) of Gallium-Nitride-based Light Emitting Diodes (LEDs) by the use of the Single Mirror (SMLED) design [N.E.J. Hunt et al., Electron. Lett. 28, 2169 (1992)]. Three different substr ...