Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Dissolution of iron(III)phases is a key process in soils, surface waters, and the ocean. Previous studies found that traces of Fe(II) can greatly increase ligand controlled dissolution rates at acidic pH, but the extent that this also occurs at circumneutral pH and what mechanisms are involved are not known. We addressed these questions with infrared spectroscopy and Fe-57 isotope exchange experiments with lepidocrocite (L-P) and 50 mu M ethylenediaminetetraacetate (EDTA) at pH 6 and 7. Addition of 0.2-10 mu M Fe(II) led to an acceleration of the dissolution rates by factors of 7-31. Similar effects were observed after irradiation with 365 nm UV light. The catalytic effect persisted under anoxic conditions, but decreased as soon as air or phenanthroline was introduced. Isotope exchange experiments showed that added Fe-57 remained in solution, or quickly reappeared in solution when EDTA was added after Fe-57(II), suggesting that catalyzed dissolution occurred at or near the site of Fe-57 incorporation at the mineral surface. Infrared spectra indicated no change in the bulk, but changes in the spectra of adsorbed EDTA after addition of Fe(II) were observed. A kinetic model shows that the catalytic effect can be explained by electron transfer to surface Fe(III) sites and rapid detachment of Fe(III)EDTA due to the weaker bonds to reduced sites. We conclude that the catalytic effect of Fe(II) on dissolution of Fe(III)(hydr)oxides is likely important under circumneutral anoxic conditions and in sunlit environments.
Luis Guillermo Villanueva Torrijo, Annalisa De Pastina
Federico De Biasi, Paolo Costa
Rainer Beck, Mateusz Suchodol, Harmina Vejayan