Mitotic chromosome binding predicts transcription factor properties in interphase
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Binding of mammalian transcription factors (TFs) to regulatory regions is hindered by chromatin compaction and DNA methylation of their binding sites. Nevertheless, pioneer transcription factors (PFs), a distinct class of TFs, have the ability to access nu ...
Nearly all the cells of an organism share the same DNA sequence or genome, and yet they show different phenotypes and carry out different functions. This diversity is made possible by a verity of molecular modifications acting on the DNA sequence that coll ...
Precise spatiotemporal regulation of gene expression is essential for development and homeostasis of complex organisms. This is achieved in large part by sequence-specific transcription factors (TF) that bind to genomic regulatory elements to activate or r ...
Any living organism contains a whole set of instructions encoded as genes on the DNA. This set of instructions contains all the necessary information that the organism will ever need, from its development to a mature individual to environment specific resp ...
The inner nuclear membrane is functionalized by diverse transmembrane proteins that associate with nuclear lamins and/or chromatin. When cells enter mitosis, membrane-chromatin contacts must be broken to allow for proper chromosome segregation; yet how thi ...
Effector proteins are recruited to chromatin via transient interactions between their reader domains and histone post-translational modification (PTM) patterns. These interactions form signaling pathways that control gene expression or repression and which ...
BackgroundPositional weight matrix (PWM) is a de facto standard model to describe transcription factor (TF) DNA binding specificities. PWMs inferred from in vivo or in vitro data are stored in many databases and used in a plethora of biological application ...
Epigenetics plays an important role in cancer development and progression. Cancer cells hijack the epigenome by modifying the histone protein units responsible for packaging DNA, or by modifying the DNA itself, resulting in changes to chromatin topology an ...
Transcription factors (TFs) bind to specific DNA motifs to regulate the expression of target genes. To reach their binding sites, TFs diffuse in 3D and perform local motions such as 1D sliding, hopping, or intersegmental transfer. TF-DNA interactions depen ...
Mammalian transcription factors (TFs) differ broadly in their nuclear mobility and sequence-specific/non-specific DNA binding. How these properties affect their ability to occupy specific genomic sites and modify the epigenetic landscape is unclear. The as ...