Collaborative Sampling in Generative Adversarial Networks
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
To sustain the input rate of high-throughput streams, modern stream processing systems rely on parallel execution. However, skewed data yield imbalanced load assignments and create stragglers that hinder scalability. Deciding on a static partitioning for a ...
2022
, , , , ,
The Skinned Multi-Person Linear (SMPL) model represents human bodies by mapping pose and shape parameters to body meshes. However, not all pose and shape parameter values yield physically-plausible or even realistic body meshes. In other words, SMPL is und ...
We formulate gradient-based Markov chain Monte Carlo (MCMC) sampling as optimization on the space of probability measures, with Kullback-Leibler (KL) divergence as the objective functional. We show that an under-damped form of the Langevin algorithm perfor ...
This paper reports an algorithm to automatically identify the chain of events leading to a disruption, evaluating the so-called reference warning time. This time separates the plasma current flat-top of each disrupted discharge into two parts: a non-disrup ...
The maximal achievable advantage of a (computationally unbounded) distinguisher to determine whether a source Z is distributed according to distribution P0 or P1, when given access to one sample of Z, is characterized by the statistical distance ...
Springer, Cham2020
, ,
Deep-learning-based digital twins (DDT) are a promising tool for data-driven system health management because they can be trained directly on operational data. A major challenge for efficient training however is that industrial datasets remain unlabeled. T ...
Research Publishing2023
,
We consider a setup in which confidential i.i.d. samples X1, . . . , Xn from an unknown finite-support distribution p are passed through n copies of a discrete privatization chan- nel (a.k.a. mechanism) producing outputs Y1, . . . , Yn. The channel law gua ...
The present invention describes an imaging system that allows visualization of a wide range of samples both in terms of morphology and in terms of material (e.g. density distribution, varying chemical composition, or anything that induces a change of optic ...
Domain generalization (DG) aims to learn a model from multiple training (i.e., source) domains that can generalize well to the unseen test (i.e., target) data coming from a different distribution. Single domain generalization (SingleDG) has recently emerge ...
We study generalization properties of random features (RF) regression in high dimensions optimized by stochastic gradient descent (SGD) in under-/overparameterized regime. In this work, we derive precise non-asymptotic error bounds of RF regression under b ...