Sparse and Low-rank Modeling for Automatic Speech Recognition
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Clustering in education, particularly in large-scale online environments like MOOCs, is essential for understanding and adapting to diverse student needs. However, the effectiveness of clustering depends on its interpretability, which becomes challenging w ...
The project introduces an innovative visual method for analysing libraries and archives, with a focus on Bibliotheca Hertziana’s library collection. This collection, which dates back over a century, is examined by integrating user loan data with deep mappi ...
Speech recognition-based applications upon the advancements in artificial intelligence play an essential role to transform most aspects of modern life. However, speech recognition in real-life conditions (e.g., in the presence of overlapping speech, varyin ...
Self-supervised learning (SSL) models use only the intrinsic structure of a given signal, independent of its acoustic domain, to extract essential information from the input to an embedding space. This implies that the utility of such representations is no ...
Unsupervised Domain Adaptation Regression (DAR) aims to bridge the domain gap between a labeled source dataset and an unlabelled target dataset for regression problems. Recent works mostly focus on learning a deep feature encoder by minimizing the discrepa ...
This paper presents an acoustic impedance control architecture for an electroacoustic absorber combining both feedforward and feedback microphone-based strategies on a current-driven loudspeaker. Feedforward systems enable good performance for direct imped ...
Tensor trains are a versatile tool to compress and work with high-dimensional data and functions. In this work we introduce the streaming tensor train approximation (STTA), a new class of algorithms for approximating a given tensor ' in the tensor train fo ...
The use of meteorological radars to study snowfall microphysical properties and processes is well established, in particular via a few distinct techniques: the use of radar polarimetry, of multi-frequency radar measurements, and of the radar Doppler spectr ...
Starting from a strong Lattice-Free Maximum Mutual Information (LF-MMI) baseline system, we explore different autoencoder configurations to enhance Mel-Frequency Cepstral Coefficients (MFCC) features. Autoencoders are expected to generate new MFCC features ...
In Bourlard and Kamp (Biol Cybern 59(4):291-294, 1998), it was theoretically proven that autoencoders (AE) with single hidden layer (previously called "auto-associative multilayer perceptrons") were, in the best case, implementing singular value decomposit ...