Publication

MATHICSE Technical Report : Fast and accurate elastic analysis of laminated composite plates via isogeometric collocation and an equilibrium-based stress recovery approach

Pablo Antolin Sanchez, Alessandro Reali
2019
Report or working paper
Abstract

A novel approach which combines isogeometric collocation and an equilibriumbased stress recovery technique is applied to analyze laminated composite plates. Isogeometric collocation is an appealing strong form alternative to standard Galerkin approaches, able to achieve high order convergence rates coupled with a significantly reduced computational cost. Laminated composite plates are herein conveniently modeled considering only one element through the thickness with homogenized material properties. This guarantees accurate results in terms of displacements and in-plane stress components. To recover an accurate out-of-plane stress state, equilibrium is imposed in strong form as a post-processing correction step, which requires the shape functions to be highly continuous. This continuity demand is fully granted A novel approach which combines isogeometric collocation and an equilibriumbased stress recovery technique is applied to analyze laminated composite plates. Isogeometric collocation is an appealing strong form alternative to standard Galerkin approaches, able to achieve high order convergence rates coupled with a significantly reduced computational cost. Laminated composite plates are herein conveniently modeled considering only one element through the thickness with homogenized material properties. This guarantees accurate results in terms of displacements and in-plane stress components. To recover an accurate out-of-plane stress state, equilibrium is imposed in strong form as a post-processing correction step, which requires the shape functions to be highly continuous. This continuity demand is fully granted.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.