Publication

Pioneer plant Phalaris arundinacea and earthworms promote initial soil structure formation despite strong alluvial dynamics in a semi-controlled field experiment

Abstract

Soil structure formation is among the most important processes in riverfloodplains which are strongly influ-enced by alluvial dynamics. In the context of river restoration projects, a better understanding of soil structureformation in habitats adjacent to the river can help to prevent damages caused by riverbank erosion. Ecosystemengineers such as pioneer herbaceous plants and earthworms likely contribute to soil structure formation evendespite less favourable environmental conditions. This study aims to assess the capacity of the herbaceousperennial and native speciesPhalaris arundinaceaand earthworm communities to promote a stable soil structurein alluvial sediments, in particular fresh alluvial deposits, in the short term. Delimited plots were set-up in arestoredfloodplain adjacent to the Thur River in NE Switzerland and exposed to natural alluvial dynamics for19 months. Four treatments were replicated in a randomised complete block design: (i) plots withPhalaris ar-undinaceaas only vegetation, (ii) plots with all vegetation constantly removed, (iii) and (iv) the earthwormcommunity reduced by mustard treatment, otherwise as (i) and (ii), respectively. Soil structure formation wasanalysed at the end of the experiment using different indicators: aggregate stability,field-saturated hydraulicconductivity and the porosity calculated from X-ray CT reconstructions of freeze cores.Phalaris arundinaceawascapable of improving the porosity and aggregate stability of both alluvial sediments present at the beginning ofthe experiment but also of sediments freshly deposited during the observation period. The latter indicates astructuring effect within only one vegetation period. Earthworm abundance was as a whole very low, most likelydue to the large proportion of sand. There was a small earthworm effect on soil structure formation, and only incombination withPhalaris.arundinacea. Ourfindings highlight the ability ofPhalaris arundinaceain efficientlystructuring sandy alluvial sediments in the short term even under strong alluvial dynamics.Phalaris arundinaceacan therefore play a key role in the early stage of river restoration projects. Thus, facilitating the colonisation bysuch native pioneer herbaceous plants is a suitable step to improve the success of river restoration projects.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (38)
Alluvial fan
An alluvial fan is an accumulation of sediments that fans outwards from a concentrated source of sediments, such as a narrow canyon emerging from an escarpment. They are characteristic of mountainous terrain in arid to semiarid climates, but are also found in more humid environments subject to intense rainfall and in areas of modern glaciation. They range in area from less than to almost . Alluvial fans typically form where flow emerges from a confined channel and is free to spread out and infiltrate the surface.
Soil
Soil, also commonly referred to as earth, is a mixture of organic matter, minerals, gases, liquids, and organisms that together support life of plants and soil organisms. Some scientific definitions distinguish dirt from soil by restricting the former term specifically to displaced soil. Soil consists of a solid phase of minerals and organic matter (the soil matrix), as well as a porous phase that holds gases (the soil atmosphere) and water (the soil solution). Accordingly, soil is a three-state system of solids, liquids, and gases.
Soil formation
Soil formation, also known as pedogenesis, is the process of soil genesis as regulated by the effects of place, environment, and history. Biogeochemical processes act to both create and destroy order (anisotropy) within soils. These alterations lead to the development of layers, termed soil horizons, distinguished by differences in color, structure, texture, and chemistry. These features occur in patterns of soil type distribution, forming in response to differences in soil forming factors.
Show more
Related publications (35)

Quantifying the effects of rainfall temporal variability on landscape evolution processes

Sara Bonetti, Taiqi Lian

Lausanne, Quartier Centre, CH-1015 Lausanne, Switzerland Rainfall characteristics such as its intensity, duration, and frequency are key determinants of the hydro-geomorphological response of a catchment. The presence of non-linear and threshold effects ma ...
2023

Enhancing Flood Resilience: Sediment Management in Le Bez Torrent

Giovanni De Cesare, Azin Amini, Romain Nathan Hippolyte Merlin Van Mol

In the canton of Bern, Switzerland, the “Le Bez” torrent is known for its flash floods, causing sediment and wood debris buildup in Villeret village settled on the alluvial fan. To mitigate this issue, a sediment/wood trap system is being implemented upstr ...
Swiss Academy of Sciences (SCNAT)2023

Global Prediction of Soil Saturated Hydraulic Conductivity Using Random Forest in a Covariate‐Based GeoTransfer Function (CoGTF) Framework

Sara Bonetti, Dani Or

Saturated hydraulic conductivity (Ksat) is a key soil hydraulic parameter for representing infiltration and drainage in land surface models. For large scale applications, Ksat is often estimated from pedotransfer functions (PTFs) based on easy-to-measure s ...
2021
Show more
Related MOOCs (2)
Water quality and the biogeochemical engine
Learn about how the quality of water is a direct result of complex bio-geo-chemical interactions, and about how to use these processes to mitigate water quality issues.
Fluid Mechanics
Ce cours de base est composé des sept premiers modules communs à deux cours bachelor, donnés à l’EPFL en génie mécanique et génie civil.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.