Scanning near-field optical microscopy with new probes and feedback modes
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We present the development and first application of a novel dual-color total internal reflection (TIR) fluorescence system for single-molecule coincidence analysis and fluorescence cross-correlation spectroscopy (FCCS). As a performance analysis, we measur ...
We developed a dual-color total internal reflection fluorescence (TIRF) system for single molecule imaging and fluorescence fluctuation spectroscopy (FFS). For a performance analysis, we measured a synthetic binding assay with dual-color global fluorescenc ...
We developed a dual-color total internal reflection fluorescence (TIRF) system for single molecule imaging and fluorescence fluctuation spectroscopy (FFS). For a performance analysis, we measured a synthetic binding assay with dual-color global fluorescenc ...
A study of the microstructure developing at the surface of glass fibers in a poly(vinyl acetate) (PVAc)/polyester blend is presented. Three different experimental methods are used: a technique based on the Wilhelmy method to measure the wettability of the ...
We present theoretical and experimental results on switching and tuning of a two-dimensional photonic crystal resonant microcavity by means of a silicon AFM tip, probing the highly localized optical field in the vicinity of the cavity. On-off switching and ...
We investigate the effect of defects in the metal-coating layer of a scanning near-field optical microscopy (SNOM) probe on the coupling of polarization modes using rigorous electromagnetic modeling tools. Because of practical limitations, we study an ense ...
Many applications in materials science, life science and process control would benefit from atomic force microscopes (AFM) with higher scan speeds. To achieve this, the performance of many of the AFM components has to be increased. In this work, we focus o ...
We report a novel microfluidics-based lensless imaging technique, termed optofluidic microscopy (OFM), and demonstrate Caenorhabditis elegans imaging with an OFM prototype that gives comparable resolution to a conventional microscope and a measured resolut ...
Employing higher oscillation modes of microcantilevers promises higher sensitivity when applied as sensors, for example, for mass detection or in atomic force microscopy. Introducing a special cantilever geometry, we show that the relation between the reso ...
We present a unique probe that is based on a quartz tuning fork and a microfabricated cantilever. The probe is self-actuating and self-sensing. The cantilever can be tailored to the needs of specific applications, in this case to feature an electrically co ...