Scanning near-field optical microscopy with new probes and feedback modes
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In this thesis new imaging approaches for optical microscopy are proposed and studied. They are based on the use of dynamic structured illumination in combination with a demodulation detection concept employing CMOS image detectors. Two particular implemen ...
This thesis further explores the possibilities of scanning near-field optical microscopy (SNOM) in both materials and life sciences. Two experimental SNOM setups were developed: one designed for infrared spectroscopy applications and the other for the imag ...
We present the results of an exptl. and theor. study on the optimum design of shear-force sensors, used in scanning probe microscopes. We have optimized a configuration consisting of a tuning-fork/fiber-tip assembly, achieving quality factors (Q) exceeding ...
Scanning near-field optical microscopy (SNOM or NSOM) is the technique with the highest lateral optical resolution available today, while infrared (IR) spectroscopy has a high chemical specificity. Combining SNOM with a tunable IR source produces a unique ...
The advent of scanning near-field optical microscopy (SNOM) has augmented at the microscopic level the usefulness of IR spectroscopy. Two-dimensional imaging of chemical constituents makes this a very attractive and powerful new approach. In this paper we ...
The advent of scanning near-field optical microscopy (SNOM) has augmented at a microscopic level the usefulness of optical spectroscopy in the region between 300 nm and 10 mum. Two-dimensional imaging of chemical constituents makes this a very attractive a ...
Self-organized GaN/AlN stacked quantum dots (QDs) have been studied by means of cathodoluminescence (CL), near field scanning optical microscopy (NSOM), photoluminescence, mu-Raman, and transmission electron microscopy. Assignment of the optical emissions ...
‘Real-time’ nanoscale imaging and single molecule force spectroscopy of bio-chemical specimen based on atomic force microscopy (AFM) requires cantilevers with both low force constant and high-resonant frequency. The required spring constant should be betwe ...
In this thesis a new scanning near field optical microscope based on an apertureless scattering technique is introduced for resolving optical properties of surfaces with lateral resolution reaching 10 nm and better. The construction of the instrument is ba ...
The infrared (IR) absorption of a biological system can potentially report on fundamentally important microchemical properties. For example, molecular IR profiles are known to change during increases in metabolic flux, protein phosphorylation, or proteolyt ...