Low-Temperature Screen-Printed Metallization for the Scale-Up of Two-Terminal Perovskite-Silicon Tandems
Related publications (33)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
As the efficiency of commercial crystalline silicon solar cells approaches its maximum theoretical value, tandem architectures are becoming increasingly popular to continue the push to higher photovoltaic performances. Thin-film materials are particularly ...
The emergence of high-efficiency photovoltaic research is undergoing intense study and is technologically desirable to meet sustainable energy and environmental demand. However, every single solar cell has a theoretical power conversion efficiency limit, a ...
The developed world is built on the fact that energy is readily available and functionally infinite. The electricity from the wall, the gas at the station, and the heat in our homes are reliable and low-cost. But this comfort is so far only possible throug ...
Crystalline Silicon (c-Si) solar cells are dominating the photovoltaic (PV) market. Owing to their large manufacturing capacity, reliability and efficiency, c-Si solar cells are now cost-competitive with other non-renewable electricity sources in many plac ...
Today more than ever the world needs clean energy sources and thus a fast deployment and scaling up of the photovoltaic industry. In this context improving solar cell efficiency plays a major role. In order to achieve the maximum single junction efficiency ...
EPFL2022
,
Solar cells rely on the efficient generation of electrons and holes and the subsequent collection of these photoexcited charge carriers at spatially separated electrodes. High wafer quality is now commonplace for crystalline silicon (c-Si) based solar cell ...
WILEY2022
To overcome the worldwide challenges of climate change, photovoltaics is foreseen to play a significant role in the world electricity production. Nowadays, single junction crystalline silicon (c-Si) based solar cells hold the largest share of the global ph ...
EPFL2021
Thanks to the continuous improvement of crystalline silicon (c-Si) solar cells, largely dominating the market, photovoltaic electricity is nowadays the cheapest source of energy on the market. Yet, solar energy is far from being completely harvested, as t ...
The global photovoltaic market is mostly dominated by solar cells based on crystalline silicon (c-Si), which are covering 95% of the market. This thesis concerns silicon heterojunction (SHJ), a high-efficiency technology with a 2% market share in 2018, but ...
The recombination of photogenerated charge carriers at metal-semiconductor interfaces remains a major source of efficiency loss in photovoltaic cells. Here, we present SiNx and AlOx nanolayers as promising interface dielectrics to enable high efficiency ho ...