Rigged Hilbert spaceIn mathematics, a rigged Hilbert space (Gelfand triple, nested Hilbert space, equipped Hilbert space) is a construction designed to link the distribution and square-integrable aspects of functional analysis. Such spaces were introduced to study spectral theory in the broad sense. They bring together the 'bound state' (eigenvector) and 'continuous spectrum', in one place. A function such as is an eigenfunction of the differential operator on the real line R, but isn't square-integrable for the usual Borel measure on R.
Maximal idealIn mathematics, more specifically in ring theory, a maximal ideal is an ideal that is maximal (with respect to set inclusion) amongst all proper ideals. In other words, I is a maximal ideal of a ring R if there are no other ideals contained between I and R. Maximal ideals are important because the quotients of rings by maximal ideals are simple rings, and in the special case of unital commutative rings they are also fields.
Spectral theoryIn mathematics, spectral theory is an inclusive term for theories extending the eigenvector and eigenvalue theory of a single square matrix to a much broader theory of the structure of operators in a variety of mathematical spaces. It is a result of studies of linear algebra and the solutions of systems of linear equations and their generalizations. The theory is connected to that of analytic functions because the spectral properties of an operator are related to analytic functions of the spectral parameter.
Fractional idealIn mathematics, in particular commutative algebra, the concept of fractional ideal is introduced in the context of integral domains and is particularly fruitful in the study of Dedekind domains. In some sense, fractional ideals of an integral domain are like ideals where denominators are allowed. In contexts where fractional ideals and ordinary ring ideals are both under discussion, the latter are sometimes termed integral ideals for clarity. Let be an integral domain, and let be its field of fractions.
Spectrum (functional analysis)In mathematics, particularly in functional analysis, the spectrum of a bounded linear operator (or, more generally, an unbounded linear operator) is a generalisation of the set of eigenvalues of a matrix. Specifically, a complex number is said to be in the spectrum of a bounded linear operator if either has no set-theoretic inverse; or the set-theoretic inverse is either unbounded or defined on a non-dense subset. Here, is the identity operator. By the closed graph theorem, is in the spectrum if and only if the bounded operator is non-bijective on .
Prime idealIn algebra, a prime ideal is a subset of a ring that shares many important properties of a prime number in the ring of integers. The prime ideals for the integers are the sets that contain all the multiples of a given prime number, together with the zero ideal. Primitive ideals are prime, and prime ideals are both primary and semiprime. An ideal P of a commutative ring R is prime if it has the following two properties: If a and b are two elements of R such that their product ab is an element of P, then a is in P or b is in P, P is not the whole ring R.
Principal idealIn mathematics, specifically ring theory, a principal ideal is an ideal in a ring that is generated by a single element of through multiplication by every element of The term also has another, similar meaning in order theory, where it refers to an (order) ideal in a poset generated by a single element which is to say the set of all elements less than or equal to in The remainder of this article addresses the ring-theoretic concept.
Square-integrable functionIn mathematics, a square-integrable function, also called a quadratically integrable function or function or square-summable function, is a real- or complex-valued measurable function for which the integral of the square of the absolute value is finite. Thus, square-integrability on the real line is defined as follows. One may also speak of quadratic integrability over bounded intervals such as for . An equivalent definition is to say that the square of the function itself (rather than of its absolute value) is Lebesgue integrable.
Self-adjoint operatorIn mathematics, a self-adjoint operator on an infinite-dimensional complex vector space V with inner product (equivalently, a Hermitian operator in the finite-dimensional case) is a linear map A (from V to itself) that is its own adjoint. If V is finite-dimensional with a given orthonormal basis, this is equivalent to the condition that the matrix of A is a Hermitian matrix, i.e., equal to its conjugate transpose A^∗. By the finite-dimensional spectral theorem, V has an orthonormal basis such that the matrix of A relative to this basis is a diagonal matrix with entries in the real numbers.
Decomposition of spectrum (functional analysis)The spectrum of a linear operator that operates on a Banach space is a fundamental concept of functional analysis. The spectrum consists of all scalars such that the operator does not have a bounded inverse on . The spectrum has a standard decomposition into three parts: a point spectrum, consisting of the eigenvalues of ; a continuous spectrum, consisting of the scalars that are not eigenvalues but make the range of a proper dense subset of the space; a residual spectrum, consisting of all other scalars in the spectrum.