Proper timeIn relativity, proper time (from Latin, meaning own time) along a timelike world line is defined as the time as measured by a clock following that line. The proper time interval between two events on a world line is the change in proper time, which is independent of coordinates, and is a Lorentz scalar. The interval is the quantity of interest, since proper time itself is fixed only up to an arbitrary additive constant, namely the setting of the clock at some event along the world line.
Lyapunov stabilityVarious types of stability may be discussed for the solutions of differential equations or difference equations describing dynamical systems. The most important type is that concerning the stability of solutions near to a point of equilibrium. This may be discussed by the theory of Aleksandr Lyapunov. In simple terms, if the solutions that start out near an equilibrium point stay near forever, then is Lyapunov stable. More strongly, if is Lyapunov stable and all solutions that start out near converge to , then is said to be asymptotically stable (see asymptotic analysis).
Asymptotic expansionIn mathematics, an asymptotic expansion, asymptotic series or Poincaré expansion (after Henri Poincaré) is a formal series of functions which has the property that truncating the series after a finite number of terms provides an approximation to a given function as the argument of the function tends towards a particular, often infinite, point. Investigations by revealed that the divergent part of an asymptotic expansion is latently meaningful, i.e. contains information about the exact value of the expanded function.
Lyapunov functionIn the theory of ordinary differential equations (ODEs), Lyapunov functions, named after Aleksandr Lyapunov, are scalar functions that may be used to prove the stability of an equilibrium of an ODE. Lyapunov functions (also called Lyapunov’s second method for stability) are important to stability theory of dynamical systems and control theory. A similar concept appears in the theory of general state space Markov chains, usually under the name Foster–Lyapunov functions.
Asymptotic analysisIn mathematical analysis, asymptotic analysis, also known as asymptotics, is a method of describing limiting behavior. As an illustration, suppose that we are interested in the properties of a function f (n) as n becomes very large. If f(n) = n2 + 3n, then as n becomes very large, the term 3n becomes insignificant compared to n2. The function f(n) is said to be "asymptotically equivalent to n2, as n → ∞". This is often written symbolically as f (n) ~ n2, which is read as "f(n) is asymptotic to n2".
Reinforcement learningReinforcement learning (RL) is an area of machine learning concerned with how intelligent agents ought to take actions in an environment in order to maximize the notion of cumulative reward. Reinforcement learning is one of three basic machine learning paradigms, alongside supervised learning and unsupervised learning. Reinforcement learning differs from supervised learning in not needing labelled input/output pairs to be presented, and in not needing sub-optimal actions to be explicitly corrected.
SpacetimeIn physics, spacetime is any mathematical model that fuses the three dimensions of space and the one dimension of time into a single four-dimensional continuum. Spacetime diagrams are useful in visualizing and understanding relativistic effects such as how different observers perceive where and when events occur. Until the turn of the 20th century, the assumption had been that the three-dimensional geometry of the universe (its description in terms of locations, shapes, distances, and directions) was distinct from time (the measurement of when events occur within the universe).
Q-learningQ-learning is a model-free reinforcement learning algorithm to learn the value of an action in a particular state. It does not require a model of the environment (hence "model-free"), and it can handle problems with stochastic transitions and rewards without requiring adaptations. For any finite Markov decision process (FMDP), Q-learning finds an optimal policy in the sense of maximizing the expected value of the total reward over any and all successive steps, starting from the current state.
BackpropagationAs a machine-learning algorithm, backpropagation performs a backward pass to adjust the model's parameters, aiming to minimize the mean squared error (MSE). In a single-layered network, backpropagation uses the following steps: Traverse through the network from the input to the output by computing the hidden layers' output and the output layer. (the feedforward step) In the output layer, calculate the derivative of the cost function with respect to the input and the hidden layers.
Proper lengthProper length or rest length is the length of an object in the object's rest frame. The measurement of lengths is more complicated in the theory of relativity than in classical mechanics. In classical mechanics, lengths are measured based on the assumption that the locations of all points involved are measured simultaneously. But in the theory of relativity, the notion of simultaneity is dependent on the observer. A different term, proper distance, provides an invariant measure whose value is the same for all observers.