**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# A Constant-Factor Approximation Algorithm for the Asymmetric Traveling Salesman Problem

Abstract

We give a constant-factor approximation algorithm for the asymmetric traveling salesman problem. Our approximation guarantee is analyzed with respect to the standard LP relaxation, and thus our result confirms the conjectured constant integrality gap of that relaxation. Our techniques build upon the constant-factor approximation algorithm for the special case of node-weighted metrics. Specifically, we give a generic reduction to structured instances that resemble, but are more general than, those arising from node-weighted metrics. For those instances, we then solve Local-Connectivity ATSP, a problem known to be equivalent (in terms of constant-factor approximation) to the asymmetric traveling salesman problem.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications (37)

Related concepts (20)

Approximation algorithm

In computer science and operations research, approximation algorithms are efficient algorithms that find approximate solutions to optimization problems (in particular NP-hard problems) with provable guarantees on the distance of the returned solution to the optimal one. Approximation algorithms naturally arise in the field of theoretical computer science as a consequence of the widely believed P ≠ NP conjecture. Under this conjecture, a wide class of optimization problems cannot be solved exactly in polynomial time.

Travelling salesman problem

The travelling salesman problem (TSP) asks the following question: "Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the origin city?" It is an NP-hard problem in combinatorial optimization, important in theoretical computer science and operations research. The travelling purchaser problem and the vehicle routing problem are both generalizations of TSP.

Linear programming relaxation

In mathematics, the relaxation of a (mixed) integer linear program is the problem that arises by removing the integrality constraint of each variable. For example, in a 0–1 integer program, all constraints are of the form The relaxation of the original integer program instead uses a collection of linear constraints The resulting relaxation is a linear program, hence the name.

An integer linear program is a problem of the form max{c^T x : Ax=b, x >= 0, x integer}, where A is in Z^(n x m), b in Z^m, and c in Z^n.Solving an integer linear program is NP-hard in general, but there are several assumptions for which it becomes fixed p ...

Ola Nils Anders Svensson, Xinrui Jia

An instance of colorful k-center consists of points in a metric space that are colored red or blue, along with an integer k and a coverage requirement for each color. The goal is to find the smallest radius rho such that there exist balls of radius rho aro ...

,

An instance of colorful k-center consists of points in a metric space that are colored red or blue, along with an integer k and a coverage requirement for each color. The goal is to find the smallest radius ρ such that there exist balls of radius ρ around ...