Publication

A pathwise approach to the extinction of branching processes with countably many types

Sophie Myriam Hautphenne
2019
Journal paper
Abstract

We consider the extinction events of Galton-Watson processes with countably infinitely many types. In particular, we construct truncated and augmented Galton-Watson processes with finite but increasing sets of types. A pathwise approach is then used to show that, under some sufficient conditions, the corresponding sequence of extinction probability vectors converges to the global extinction probability vector of the Galton-Watson process with countably infinitely many types. Besides giving rise to a family of new iterative methods for computing the global extinction probability vector, our approach paves the way to new global extinction criteria for branching processes with countably infinitely many types. (C) 2018 Elsevier B.V. All rights reserved.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.