Publication

Counter-directional polariton coupler

Abstract

We report on an on-chip routing device for propagating condensates of exciton-polaritons. This counter-directional coupler implements signal control by a photonic microdisk potential, which couples two lithographically defined waveguides and reverses the condensate's propagation direction. By varying the structural sizes, we utilize the conjunction of the different dimensionalities to additionally evidence the functionality of a polaritonic resonant tunnel diode. Furthermore, we investigate the ultra-fast dynamics of the device via ps-resolved streak camera measurements, which is distinctive for the polariton platform. This scalable, all-directional coupler element is a central building block for compact non-linear on-chip photonic architectures. Published under license by AIP Publishing.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (19)
System on a chip
A system on a chip or system-on-chip (SoC ,ˈɛsoʊsiː; pl. SoCs ,ˈɛsoʊsiːz) is an integrated circuit that integrates most or all components of a computer or other electronic system. These components almost always include on-chip central processing unit (CPU), memory interfaces, input/output devices, input/output interfaces, and secondary storage interfaces, often alongside other components such as radio modems and a graphics processing unit (GPU) – all on a single substrate or microchip.
Network on a chip
A network on a chip or network-on-chip (NoC ˌɛnˌoʊˈsiː or nɒk ) is a network-based communications subsystem on an integrated circuit ("microchip"), most typically between modules in a system on a chip (SoC). The modules on the IC are typically semiconductor IP cores schematizing various functions of the computer system, and are designed to be modular in the sense of network science. The network on chip is a router-based packet switching network between SoC modules.
Plasmon
In physics, a plasmon is a quantum of plasma oscillation. Just as light (an optical oscillation) consists of photons, the plasma oscillation consists of plasmons. The plasmon can be considered as a quasiparticle since it arises from the quantization of plasma oscillations, just like phonons are quantizations of mechanical vibrations. Thus, plasmons are collective (a discrete number) oscillations of the free electron gas density. For example, at optical frequencies, plasmons can couple with a photon to create another quasiparticle called a plasmon polariton.
Show more
Related publications (32)

Thermo-optic epsilon-near-zero effects

Camille Sophie Brès, Marco Clementi, Jiaye Wu, Qian Li

Nonlinear epsilon-near-zero (ENZ) nanodevices featuring vanishing permittivity and CMOS-compatibility are attractive solutions for large-scale-integrated systems-on-chips. Such confined systems with unavoidable heat generation impose critical challenges fo ...
Berlin2024

Parametric Wavelength Conversion in Waveguiding Structures: Efficiency, Bandwidth and Polarization

Arman Ayan

Photonics integrated circuits are a promising solution for the growing demands of data transmission and future system-on-chip technologies. Within this context, nonlinear optical interactions offer unique opportunities for all-optical processing, sampling, ...
EPFL2024

Sub-kHz-Linewidth External-Cavity Laser (ECL) With Si3N4 Resonator Used as a Tunable Pump for a Kerr Frequency Comb

Tobias Kippenberg, Junqiu Liu

Combining optical gain in direct-bandgap III-V materials with tunable optical feedback offered by advanced photonic integrated circuits is key to chip-scale external-cavity lasers (ECL), offering wideband tunability along with low optical linewidths. Exter ...
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC2023
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.