**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# Natural seesaw and leptogenesis from hybrid of high-scale type I and TeV-scale inverse

Abstract

We develop an extension of the basic inverse seesaw model which addresses simultaneously two of its drawbacks, namely, the lack of explanation of the tiny Majorana mass term for the TeV-scale singlet fermions and the difficulty in achieving successful leptogenesis. Firstly, we investigate systematically leptogenesis within the inverse (and the related linear) seesaw models and show that a successful scenario requires either small Yukawa couplings, implying loss of experimental signals, and/or quasi-degeneracy among singlets mass of different generations, suggesting extra structure must be invoked. Then we move to the analysis of our new framework, which we refer to as hybrid seesaw. This combines the TeV degrees of freedom of the inverse seesaw with those of a high-scale (M-N >> TeV) seesaw module in such a way as to retain the main features of both pictures: naturally small neutrino masses, successful leptogenesis, and accessible experimental signatures. We show how the required structure can arise from a more fundamental theory with a gauge symmetry or from warped extra dimensions/composite Higgs. We provide a detailed derivation of all the analytical formulae necessary to analyze leptogenesis in this new framework, and discuss the entire gamut of possibilities our scenario encompasses including scenarios with singlet masses in the enlarged range M-N approximate to 10(6) - 10(16) GeV. This idea of hybrid seesaw was proposed by us in arXiv:1804.06847; here, we substantially elaborate upon and extend earlier results.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications (33)

Related concepts (33)

Seesaw mechanism

In the theory of grand unification of particle physics, and, in particular, in theories of neutrino masses and neutrino oscillation, the seesaw mechanism is a generic model used to understand the relative sizes of observed neutrino masses, of the order of eV, compared to those of quarks and charged leptons, which are millions of times heavier. The name of the seesaw mechanism was given by Tsutomu Yanagida in a Tokyo conference in 1981. There are several types of models, each extending the Standard Model.

Physics beyond the Standard Model

Physics beyond the Standard Model (BSM) refers to the theoretical developments needed to explain the deficiencies of the Standard Model, such as the inability to explain the fundamental parameters of the standard model, the strong CP problem, neutrino oscillations, matter–antimatter asymmetry, and the nature of dark matter and dark energy. Another problem lies within the mathematical framework of the Standard Model itself: the Standard Model is inconsistent with that of general relativity, and one or both theories break down under certain conditions, such as spacetime singularities like the Big Bang and black hole event horizons.

Gauge theory

In physics, a gauge theory is a field theory in which the Lagrangian is invariant under local transformations according to certain smooth families of operations (Lie groups). The term gauge refers to any specific mathematical formalism to regulate redundant degrees of freedom in the Lagrangian of a physical system. The transformations between possible gauges, called gauge transformations, form a Lie group—referred to as the symmetry group or the gauge group of the theory. Associated with any Lie group is the Lie algebra of group generators.

Marco Drewes, Juraj Klaric, Yannis Georis

We consider a type-I seesaw framework endowed with a flavour symmetry, belonging to the series of non-abelian groups increment (3 n(2)) and increment (6 n(2)), and a CP symmetry. Breaking these symmetries in a non-trivial way results in the right-handed ne ...

In this Letter we demonstrate that what was previously considered as different mechanisms of baryon asymmetry generation involving two right-handed Majorana neutrinos with masses far below the Grand Unified Theory scale-leptogenesis via neutrino oscillatio ...

Jian Wang, Matthias Finger, Lesya Shchutska, Qian Wang, Matthias Wolf, Varun Sharma, Konstantin Androsov, Jan Steggemann, Leonardo Cristella, Xin Chen, Davide Di Croce, Mingkui Wang, João Miguel das Neves Duarte, Tagir Aushev, Tian Cheng, Yixing Chen, Werner Lustermann, Andromachi Tsirou, Alexis Kalogeropoulos, Andrea Rizzi, Ioannis Papadopoulos, Paolo Ronchese, Thomas Muller, Ho Ling Li, Giuseppe Codispoti, Hua Zhang, Siyuan Wang, Peter Hansen, Daniel Gonzalez, Tao Huang, David Vannerom, Michele Bianco, Kun Shi, Wei Shi, Abhisek Datta, Ji Hyun Kim, Donghyun Kim, Dipanwita Dutta, Zheng Wang, Sanjeev Kumar, Wei Li, Yong Yang, Geng Chen, Yi Wang, Ajay Kumar, Ashish Sharma, Georgios Anagnostou, Joao Varela, Csaba Hajdu, Muhammad Ahmad, Ekaterina Kuznetsova, Ioannis Evangelou, Matthias Weber, Muhammad Shoaib, Milos Dordevic, Vineet Kumar, Vladimir Petrov, Francesco Fiori, Quentin Python, Meng Xiao, Hao Liu, Sourav Sen, Yanlin Liu, Viktor Khristenko, Marco Trovato, Gurpreet Singh, Fan Xia, Xiao Wang, Bibhuprasad Mahakud, Jing Li, Rajat Gupta, Zhen Liu, Lei Feng, Muhammad Waqas, Hui Wang, Seungkyu Ha, Davide Cieri, Maren Tabea Meinhard, Giorgia Rauco, Ali Harb, Benjamin William Allen, Long Wang, Pratyush Das, Miao Hu, Lei Li

A search for new particles has been conducted using events with two high transverse momentum τ leptons that decay hadronically and at least two energetic jets. The analysis is performed using data from proton-proton collisions at $\sqrt{s}=13$ TeV, colle ...