In the theory of grand unification of particle physics, and, in particular, in theories of neutrino masses and neutrino oscillation, the seesaw mechanism is a generic model used to understand the relative sizes of observed neutrino masses, of the order of eV, compared to those of quarks and charged leptons, which are millions of times heavier. The name of the seesaw mechanism was given by Tsutomu Yanagida in a Tokyo conference in 1981. There are several types of models, each extending the Standard Model. The simplest version, "Type 1," extends the Standard Model by assuming two or more additional right-handed neutrino fields inert under the electroweak interaction, and the existence of a very large mass scale. This allows the mass scale to be identifiable with the postulated scale of grand unification. This model produces a light neutrino, for each of the three known neutrino flavors, and a corresponding very heavy neutrino for each flavor, which has yet to be observed. The simple mathematical principle behind the seesaw mechanism is the following property of any 2×2 matrix of the form It has two eigenvalues: and The geometric mean of and equals , since the determinant . Thus, if one of the eigenvalues goes up, the other goes down, and vice versa. This is the point of the name "seesaw" of the mechanism. In applying this model to neutrinos, is taken to be much larger than Then the larger eigenvalue, is approximately equal to while the smaller eigenvalue is approximately equal to This mechanism serves to explain why the neutrino masses are so small. The matrix A is essentially the mass matrix for the neutrinos. The Majorana mass component is comparable to the GUT scale and violates lepton number conservation; while the Dirac mass components are of order of the much smaller electroweak scale, called the VEV or vacuum expectation value below. The smaller eigenvalue then leads to a very small neutrino mass, comparable to 1eV, which is in qualitative accord with experiments—sometimes regarded as supportive evidence for the framework of Grand Unified Theories.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (32)
Related concepts (10)
Sterile neutrino
Sterile neutrinos (or inert neutrinos) are hypothetical particles (neutral leptons – neutrinos) that are believed to interact only via gravity and not via any of the other fundamental interactions of the Standard Model. The term sterile neutrino is used to distinguish them from the known, ordinary active neutrinos in the Standard Model, which carry an isospin charge of ± 1/ 2 and engage in the weak interaction. The term typically refers to neutrinos with right-handed chirality (see right-handed neutrino), which may be inserted into the Standard Model.
Majorana equation
In physics, the Majorana equation is a relativistic wave equation. It is named after the Italian physicist Ettore Majorana, who proposed it in 1937 as a means of describing fermions that are their own antiparticle. Particles corresponding to this equation are termed Majorana particles, although that term now has a more expansive meaning, referring to any (possibly non-relativistic) fermionic particle that is its own anti-particle (and is therefore electrically neutral).
Majorana fermion
A Majorana fermion (maɪə'rɑːnə), also referred to as a Majorana particle, is a fermion that is its own antiparticle. They were hypothesised by Ettore Majorana in 1937. The term is sometimes used in opposition to a Dirac fermion, which describes fermions that are not their own antiparticles. With the exception of neutrinos, all of the Standard Model fermions are known to behave as Dirac fermions at low energy (lower than the electroweak symmetry breaking temperature), and none are Majorana fermions.
Show more
Related MOOCs (8)
Global Arctic
The Global Arctic MOOC introduces you the dynamics between global changes and changes in the Arctic. This course aims to highlight the effects of climate change in the Polar region. In turn, it will u
Smart Cities, Management of Smart Urban Infrastructures
Learn about the principles of management of urban infrastructures in the era of Smart Cities. The introduction of Smart urban technologies into legacy infrastructures has already resulted and will con
Smart Cities, Management of Smart Urban Infrastructures
Learn about the principles of management of urban infrastructures in the era of Smart Cities. The introduction of Smart urban technologies into legacy infrastructures has already resulted and will con
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.