Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
First-principles molecular dynamics simulations have been employed to analyse the proton diffusion in cubic BaZrO3 perovskite at 1300 K. A non-linear effect on the proton diffusion coefficient arising from an applied isometric strain up to 2 % of the latti ...
We present a new QM-/QM/MM-based Model for calculating molecular properties and excited states,of solute-solvent systems. We denote this new approach the polarizable density embedding (PDE) model, and represents an extension of our previously developed pol ...
To study the influence of aqueous solvent on the electronic energy levels of dissolved organic molecules, we conducted liquid microjet photoelectron spectroscopy (PES) measurements of the aqueous vertical ionization energies (VIEaq) of aniline (7.49 eV), v ...
The excited state properties of transition metal complexes have become a central focus of research owing to a wide range of possible applications that seek to exploit their luminescence properties. Herein, we use density functional theory (DFT), time-depen ...
Water is ubiquitous in the biosphere, and the difficulty of rigorously treating the effects of aqueous solvation currently limits the widespread use of computational methods in many areas of environmental chemistry. We propose an approach to benchmark calc ...
We investigate the structural properties of liquid water at near ambient conditions using first-principles molecular dynamics simulations based on a semilocal density functional augmented with nonlocal van der Waals interactions. The adopted scheme offers ...
The simulation of the color optical properties of molecular dyes in liquid solution requires the calculation of time evolution of the solute absorption spectra fluctuating in the solvent at finite temperature. Time-averaged spectra can be directly evaluate ...
Density Functional Theory (DFT) and its time-dependent extension (TDDFT) have become two of the most popular approaches for computer simulations of the electronic structure and response properties of quantum systems. A reasonable compromise between accurac ...
Kohn-Sham density functional theory offers a powerful and robust formalism for investigating the electronic structure of many-body systems while providing a practical balance of accuracy and computational cost unmatched by other methods. Despite this succe ...
In this work, we revisit the role of nuclear quantum effects on the structural and electronic properties of the excess proton in bulk liquid water using advanced molecular dynamics techniques. The hydronium ion is known to be a weak acceptor of a hydrogen ...