Conformal groupIn mathematics, the conformal group of an inner product space is the group of transformations from the space to itself that preserve angles. More formally, it is the group of transformations that preserve the conformal geometry of the space. Several specific conformal groups are particularly important: The conformal orthogonal group. If V is a vector space with a quadratic form Q, then the conformal orthogonal group CO(V, Q) is the group of linear transformations T of V for which there exists a scalar λ such that for all x in V For a definite quadratic form, the conformal orthogonal group is equal to the orthogonal group times the group of dilations.
Minimal model (physics)In theoretical physics, a minimal model or Virasoro minimal model is a two-dimensional conformal field theory whose spectrum is built from finitely many irreducible representations of the Virasoro algebra. Minimal models have been classified and solved, and found to obey an ADE classification. The term minimal model can also refer to a rational CFT based on an algebra that is larger than the Virasoro algebra, such as a W-algebra. In minimal models, the central charge of the Virasoro algebra takes values of the type where are coprime integers such that .
Infrared fixed pointIn physics, an infrared fixed point is a set of coupling constants, or other parameters, that evolve from initial values at very high energies (short distance) to fixed stable values, usually predictable, at low energies (large distance). This usually involves the use of the renormalization group, which specifically details the way parameters in a physical system (a quantum field theory) depend on the energy scale being probed. Conversely, if the length-scale decreases and the physical parameters approach fixed values, then we have ultraviolet fixed points.
Universality classIn statistical mechanics, a universality class is a collection of mathematical models which share a single scale invariant limit under the process of renormalization group flow. While the models within a class may differ dramatically at finite scales, their behavior will become increasingly similar as the limit scale is approached. In particular, asymptotic phenomena such as critical exponents will be the same for all models in the class.
Fractal dimensionIn mathematics, a fractal dimension is a term invoked in the science of geometry to provide a rational statistical index of complexity detail in a pattern. A fractal pattern changes with the scale at which it is measured. It is also a measure of the space-filling capacity of a pattern, and it tells how a fractal scales differently, in a fractal (non-integer) dimension. The main idea of "fractured" dimensions has a long history in mathematics, but the term itself was brought to the fore by Benoit Mandelbrot based on his 1967 paper on self-similarity in which he discussed fractional dimensions.
Conformal geometryIn mathematics, conformal geometry is the study of the set of angle-preserving (conformal) transformations on a space. In a real two dimensional space, conformal geometry is precisely the geometry of Riemann surfaces. In space higher than two dimensions, conformal geometry may refer either to the study of conformal transformations of what are called "flat spaces" (such as Euclidean spaces or spheres), or to the study of conformal manifolds which are Riemannian or pseudo-Riemannian manifolds with a class of metrics that are defined up to scale.
Stellar dynamicsStellar dynamics is the branch of astrophysics which describes in a statistical way the collective motions of stars subject to their mutual gravity. The essential difference from celestial mechanics is that the number of body Typical galaxies have upwards of millions of macroscopic gravitating bodies and countless number of neutrinos and perhaps other dark microscopic bodies. Also each star contributes more or less equally to the total gravitational field, whereas in celestial mechanics the pull of a massive body dominates any satellite orbits.
Conformal mapIn mathematics, a conformal map is a function that locally preserves angles, but not necessarily lengths. More formally, let and be open subsets of . A function is called conformal (or angle-preserving) at a point if it preserves angles between directed curves through , as well as preserving orientation. Conformal maps preserve both angles and the shapes of infinitesimally small figures, but not necessarily their size or curvature. The conformal property may be described in terms of the Jacobian derivative matrix of a coordinate transformation.
Liouville field theoryIn physics, Liouville field theory (or simply Liouville theory) is a two-dimensional conformal field theory whose classical equation of motion is a generalization of Liouville's equation. Liouville theory is defined for all complex values of the central charge of its Virasoro symmetry algebra, but it is unitary only if and its classical limit is Although it is an interacting theory with a continuous spectrum, Liouville theory has been solved. In particular, its three-point function on the sphere has been determined analytically.
Conformal gravityConformal gravity refers to gravity theories that are invariant under conformal transformations in the Riemannian geometry sense; more accurately, they are invariant under Weyl transformations where is the metric tensor and is a function on spacetime. The simplest theory in this category has the square of the Weyl tensor as the Lagrangian where is the Weyl tensor. This is to be contrasted with the usual Einstein–Hilbert action where the Lagrangian is just the Ricci scalar.