**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Concept# Liouville field theory

Summary

In physics, Liouville field theory (or simply Liouville theory) is a two-dimensional conformal field theory whose classical equation of motion is a generalization of Liouville's equation.
Liouville theory is defined for all complex values of the central charge of its Virasoro symmetry algebra, but it is unitary only if
and its classical limit is
Although it is an interacting theory with a continuous spectrum, Liouville theory has been solved. In particular, its three-point function on the sphere has been determined analytically.
Liouville theory describes the dynamics of a field called the Liouville field, which is defined on a two-dimensional space. This field is not a free field due to the presence of an exponential potential
where the parameter is called the coupling constant. In a free field theory, the energy eigenvectors are linearly independent, and the momentum is conserved in interactions. In Liouville theory, momentum is not conserved.
Moreover, the potential reflects the energy eigenvectors before they reach , and two eigenvectors are linearly dependent if their momenta are related by the reflection
where the background charge is
While the exponential potential breaks momentum conservation, it does not break conformal symmetry, and Liouville theory is a conformal field theory with the central charge
Under conformal transformations, an energy eigenvector with momentum transforms as a primary field with the conformal dimension by
The central charge and conformal dimensions are invariant under the duality
The correlation functions of Liouville theory are covariant under this duality, and under reflections of the momenta. These quantum symmetries of Liouville theory are however not manifest in the Lagrangian formulation, in particular the exponential potential is not invariant under the duality.
The spectrum of Liouville theory is a diagonal combination of Verma modules of the Virasoro algebra,
where and denote the same Verma module, viewed as a representation of the left- and right-moving Virasoro algebra respectively.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related people (23)

Related courses (6)

Related publications (99)

Related concepts (4)

Related units (5)

Related lectures (38)

PHYS-739: Conformal Field theory and Gravity

This course is an introduction to the non-perturbative bootstrap approach to Conformal Field Theory and to the Gauge/Gravity duality, emphasizing the fruitful interplay between these two ideas.

PHYS-639: Field Theory in Condensed Matter Physics

Topics covered: Superfluidity in weakly interacting Bose gas, the random phase approximation to the Coulomb interaction in the Jellium model, superconductivity within the random phase approximation, t

PHYS-702: Advanced Quantum Field Theory

The course builds on the course QFT1 and QFT2 and develops in parallel to the course on Gauge Theories and the SM.

Two-dimensional conformal field theory

A two-dimensional conformal field theory is a quantum field theory on a Euclidean two-dimensional space, that is invariant under local conformal transformations. In contrast to other types of conformal field theories, two-dimensional conformal field theories have infinite-dimensional symmetry algebras. In some cases, this allows them to be solved exactly, using the conformal bootstrap method. Notable two-dimensional conformal field theories include minimal models, Liouville theory, massless free bosonic theories, Wess–Zumino–Witten models, and certain sigma models.

Operator product expansion

In quantum field theory, the operator product expansion (OPE) is used as an axiom to define the product of fields as a sum over the same fields. As an axiom, it offers a non-perturbative approach to quantum field theory. One example is the vertex operator algebra, which has been used to construct two-dimensional conformal field theories. Whether this result can be extended to QFT in general, thus resolving many of the difficulties of a perturbative approach, remains an open research question.

Conformal bootstrap

The conformal bootstrap is a non-perturbative mathematical method to constrain and solve conformal field theories, i.e. models of particle physics or statistical physics that exhibit similar properties at different levels of resolution. Unlike more traditional techniques of quantum field theory, conformal bootstrap does not use the Lagrangian of the theory. Instead, it operates with the general axiomatic parameters, such as the scaling dimensions of the local operators and their operator product expansion coefficients.

Random Matrix Universality in CFTs

Explores random matrix universality in CFTs through spectral decompositions and wormhole interpretations.

Renormalization Program: Fixed Points and Couplings

Explores fixed points and couplings in the renormalization program, revealing how complex low-energy phenomena arise from simple dynamics.

Conformal Blocks in Quantum Physics

Explains conformal blocks in quantum physics and the superposition theorem for total electric field.

Riccardo Rattazzi, Alexander Monin, Eren Clément Firat, Matthew Thomas Walters

We consider correlators for the flux of energy and charge in the background of operators with large global U(1) charge in conformal field theory (CFT). It has recently been shown that the corresponding Euclidean correlators generically admit a semiclassica ...

We study applications of spectral positivity and the averaged null energy condition (ANEC) to renormalization group (RG) flows in two-dimensional quantum field theory. We find a succinct new proof of the Zamolodchikov c-theorem, and derive further independ ...

,

The expectation value of a smooth conformal line defect in a CFT is a conformal invariant functional of its path in space-time. For example, in large N holographic theories, these fundamental observables are dual to the open-string partition function in Ad ...