Publication

Observation of CP Violation in Charm Decays

Abstract

A search for charge-parity (CP) violation in D-0 -> K-K+ and D-0 -> pi(-)pi(+) decays is reported, using pp collision data corresponding to an integrated luminosity of 5.9 fb(-1) collected at a center-of-mass energy of 13 TeV with the LHCb detector. The flavor of the charm meson is inferred from the charge of the pion in D* (2010)(+) -> D-0 pi(+) decays or from the charge of the muon in (B) over bar -> D-0 mu(-)(nu) over bar X-mu decays. The difference between the CP asymmetries in D-0 -> K-K+ and D-0 -> pi(-)pi(+) decays is measured to be Delta A(CP) = [-18.2 +/- 3.2(stat) +/- 0.9(syst)] x 10(-4) for pi-tagged and Delta A(CP) = [-9 +/- 8(stat) +/- 5(syst)] x 10(-4) for mu-tagged D-0 mesons. Combining these with previous LHCb results leads to Delta A(CP) = (-15.4 +/- 2.9) x 10(-4), where the uncertainty includes both statistical and systematic contributions. The measured value differs from zero by more than 5 standard deviations. This is the first observation of CP violation in the decay of charm hadrons.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
CP violation
In particle physics, CP violation is a violation of CP-symmetry (or charge conjugation parity symmetry): the combination of C-symmetry (charge symmetry) and P-symmetry (parity symmetry). CP-symmetry states that the laws of physics should be the same if a particle is interchanged with its antiparticle (C-symmetry) while its spatial coordinates are inverted ("mirror" or P-symmetry). The discovery of CP violation in 1964 in the decays of neutral kaons resulted in the Nobel Prize in Physics in 1980 for its discoverers James Cronin and Val Fitch.
Charm quark
The charm quark, charmed quark, or c quark is an elementary particle of the second generation. It is the third-most massive quark, with a mass of 1.27GeV/c2 (as measured in 2022) and a charge of +2/3 e. It carries charm, a quantum number. Charm quarks are found in various hadrons, such as the J/psi meson and the charmed baryons. There are also several bosons, including the W and Z bosons and the Higgs boson, that can decay into charm quarks.
LHCb experiment
The LHCb (Large Hadron Collider beauty) experiment is a particle physics detector experiment collecting data at the Large Hadron Collider at CERN. LHCb is a specialized b-physics experiment, designed primarily to measure the parameters of CP violation in the interactions of b-hadrons (heavy particles containing a bottom quark). Such studies can help to explain the matter-antimatter asymmetry of the Universe. The detector is also able to perform measurements of production cross sections, exotic hadron spectroscopy, charm physics and electroweak physics in the forward region.
Show more
Related publications (110)

Model-independent measurement of charm mixing parameters in D0 -> K0S pi+ pi- decays

Surapat Ek-In

This thesis presents a measurement of charm mixing and CP-violation parameters using D0 -> K0S pi+ pi- decays. These mixing parameters include the mass and decay-width differences of the mass eigenstates of the D0-D0bar system. A search for Charge-Parity v ...
EPFL2022

Charm Physics at LHCb

Surapat Ek-In

We review four most precise measurements from charm physics program at the LHCb during 2021. These include the first observation of non-zero mass difference between neutral charm-meson eigenstates, the world most precise determination of both time-dependen ...
PLEIADES PUBLISHING INC2022

Observation of CP violation in two-body B-(s)(0)-meson decays to charged pions and kaons

Show more
Related MOOCs (1)

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.