Ruthenium Oxide Nanosheets for Enhanced Oxygen Evolution Catalysis in Acidic Medium
Related publications (34)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
It is of great interest to the energy community to understand how the mechano-physico-chemical phenomena that eventually lead to device degradation are related to the startup, operation, and shutdown phases. For electrocatalytic systems operating in liquid ...
The value of operando and in situ characterization methodologies for understanding electrochemical systems under operation can be inferred from the upsurge of studies that have reported mechanistic insights into electrocatalytic processes based on such mea ...
Water splitting is one of the cleanest ways to store energy. The production of hydrogen and oxygen gases can be utilized in fuel cells to generate electricity, power, and heat. In the water splitting process, the oxygen evolution reaction (OER), taking pla ...
Rational design of non-noble metal electrocatalysts with high intrinsic activity for both the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is extremely impressive for sustainable electrocatalytic water splitting systems. However, i ...
Hydrogen fuel cell is a promising green technology that transforms the chemical energy in hydrogen into electricity. Currently, most of the efforts are focused on developing proton exchange membrane fuel cells (PEMFCs), however they are heavily dependent o ...
Water splitting offers the opportunity for storing solar energy and, thus, producing carbon-neutral and renewable solar fuels. The process, known as artificial photosynthesis, is limited by the electrocatalytic conversion of water into molecular oxygen. El ...
Utilizing earth-abundant metals to design economical and efficient electrocatalysts for cathodic hydrogen evolution reaction (HER) and anodic oxygen evolution reaction (OER) is critical for acquiring clean hydrogen energy by the electrochemical overall wat ...
Nowadays, molybdenum carbides (Mo2C) represent alternative electrocatalysts to noble metal for the hydrogen evolution reaction (HER). Here, a fast and simple process is proposed for the fabrication of Mo2C-based electrocatalysts on a carbon cloth substrate ...
An optimized approach to producing lattice-matched heterointerfaces for electrocatalytic hydrogen evolution has not yet been reported. Herein, we present the synthesis of lattice-matched Mo2C-Mo2N heterostructures using a gradient heating epitaxial growth ...
Achieving an efficient and stable oxygen evolution reaction (OER) in an acidic or neutral medium is of paramount importance for hydrogen production via proton exchange membrane water electrolysis (PEM-WE). Supported iridium-based nanoparticles (NPs) are th ...