Segregation of Nickel/Iron Bimetallic Particles from Lanthanum Doped Strontium Titanates to Improve Sulfur Stability of Solid Oxide Fuel Cell Anodes
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Solid oxide fuel cells (SOFCs) are approaching commercialization to improve power production efficiency. Currently, cost and lifetime reliability limit their spread in the market. The SOFC is ceramic-based, but refractory metal alloys are in fact the major ...
CeO2-based nanomaterials and their rich redox chemistry provide a possible route to pollutant abatement in various heterogeneous processes, and are in particular used as sorbents for flue gases and as oxygen promoters in three-way catalytic converters. The ...
Solid Oxide Fuel Cells (SOFCs) have gathered considerable attention as a clean, highly efficient conversion device for the production of both electricity and heat from fuels. Due to their high operating temperatures, SOFCs do not require pure hydrogen as f ...
Reduction-oxidation cycling of Ni-based electrodes for solid oxide fuel/electrolysis cells irreversibly alters their microstructure and can cause the fracture of the electrolyte. Non-destructive 3-D imaging enables tracking of microstructural changes that ...
The limited fossil fuel resources and the increasing levels of greenhouse gases in the atmosphere are the driving forces in the research of alternative ways of energy production and storage. The use of solar energy is expected to grow as our society claims ...
In this thesis, Ni catalysts derived from perovskite-type metal oxides (PMO, general formula ABO3, A=lanthanide or earth alkaline element, B=transition metal) are investigated as a potential class of materials, which are able to overcome thechallenges of c ...
This study experimentally analyzes the performance and degradation issues of an anode supported (AS) Ni-YSZ solid oxide fuel cell exposed to thiophene (C4H4S). The impact of this organic sulfur compound on the performance of SOFC Ni-YSZ anodes is reported ...
The energy sector is undergoing several transformations in an effort to tackle climate change, driving society towards reducing energy consumption and more sustainable energy conversion. In this context, electrochemical devices such as Solid Oxide Cell (SO ...
Perovskite-type oxides have shown the ability to reversibly segregate precious metals from their structure. This reversible segregation behavior was explored for a commonly used catalyst metal, Ni, to prevent Ni sintering, which is observed on most catalys ...
This paper presents a proof-of-concept study and demonstrates the next generation of a "smart" catalyst material, applicable to high temperature catalysis and electro-catalysis such as gas processing and as a catalyst for solid oxide cells. A modified citr ...