Physical objectIn common usage and classical mechanics, a physical object or physical body (or simply an object or body) is a collection of matter within a defined contiguous boundary in three-dimensional space. The boundary surface must be defined and identified by the properties of the material, although it may change over time. The boundary is usually the visible or tangible surface of the object. The matter in the object is constrained (to a greater or lesser degree) to move as one object.
Ideal gas lawThe ideal gas law, also called the general gas equation, is the equation of state of a hypothetical ideal gas. It is a good approximation of the behavior of many gases under many conditions, although it has several limitations. It was first stated by Benoît Paul Émile Clapeyron in 1834 as a combination of the empirical Boyle's law, Charles's law, Avogadro's law, and Gay-Lussac's law. The ideal gas law is often written in an empirical form: where , and are the pressure, volume and temperature respectively; is the amount of substance; and is the ideal gas constant.
Volume (thermodynamics)In thermodynamics, the volume of a system is an important extensive parameter for describing its thermodynamic state. The specific volume, an intensive property, is the system's volume per unit of mass. Volume is a function of state and is interdependent with other thermodynamic properties such as pressure and temperature. For example, volume is related to the pressure and temperature of an ideal gas by the ideal gas law. The physical volume of a system may or may not coincide with a control volume used to analyze the system.
MetreThe metre (or meter in American spelling; symbol: m) is the base unit of length in the International System of Units (SI). The metre was originally defined in 1791 as one ten-millionth of the distance from the equator to the North Pole along a great circle, so the Earth's circumference is approximately 40000 km. In 1799, the metre was redefined in terms of a prototype metre bar. The actual bar used was changed in 1889. In 1960, the metre was redefined in terms of a certain number of wavelengths of a certain emission line of krypton-86.
Intensive and extensive propertiesPhysical properties of materials and systems can often be categorized as being either intensive or extensive, according to how the property changes when the size (or extent) of the system changes. According to IUPAC, an intensive quantity is one whose magnitude is independent of the size of the system, whereas an extensive quantity is one whose magnitude is additive for subsystems. The terms "intensive and extensive quantities" were introduced into physics by German writer Georg Helm in 1898, and by American physicist and chemist Richard C.
Gravitational accelerationIn physics, gravitational acceleration is the acceleration of an object in free fall within a vacuum (and thus without experiencing drag). This is the steady gain in speed caused exclusively by the force of gravitational attraction. All bodies accelerate in vacuum at the same rate, regardless of the masses or compositions of the bodies; the measurement and analysis of these rates is known as gravimetry. At a fixed point on the surface, the magnitude of Earth's gravity results from combined effect of gravitation and the centrifugal force from Earth's rotation.
Gravity of EarthThe gravity of Earth, denoted by g, is the net acceleration that is imparted to objects due to the combined effect of gravitation (from mass distribution within Earth) and the centrifugal force (from the Earth's rotation). It is a vector quantity, whose direction coincides with a plumb bob and strength or magnitude is given by the norm . In SI units this acceleration is expressed in metres per second squared (in symbols, m/s2 or m·s−2) or equivalently in newtons per kilogram (N/kg or N·kg−1).
Physical geodesyPhysical geodesy is the study of the physical properties of Earth's gravity and its potential field (the geopotential), with a view to their application in geodesy. Traditional geodetic instruments such as theodolites rely on the gravity field for orienting their vertical axis along the local plumb line or local vertical direction with the aid of a spirit level. After that, vertical angles (zenith angles or, alternatively, elevation angles) are obtained with respect to this local vertical, and horizontal angles in the plane of the local horizon, perpendicular to the vertical.
Embedded systemAn embedded system is a computer system—a combination of a computer processor, computer memory, and input/output peripheral devices—that has a dedicated function within a larger mechanical or electronic system. It is embedded as part of a complete device often including electrical or electronic hardware and mechanical parts. Because an embedded system typically controls physical operations of the machine that it is embedded within, it often has real-time computing constraints. Embedded systems control many devices in common use.
Accuracy and precisionAccuracy and precision are two measures of observational error. Accuracy is how close a given set of measurements (observations or readings) are to their true value, while precision is how close the measurements are to each other. In other words, precision is a description of random errors, a measure of statistical variability. Accuracy has two definitions: More commonly, it is a description of only systematic errors, a measure of statistical bias of a given measure of central tendency; low accuracy causes a difference between a result and a true value; ISO calls this trueness.