Constraint satisfactionIn artificial intelligence and operations research, constraint satisfaction is the process of finding a solution through a set of constraints that impose conditions that the variables must satisfy. A solution is therefore a set of values for the variables that satisfies all constraints—that is, a point in the feasible region. The techniques used in constraint satisfaction depend on the kind of constraints being considered.
Local consistencyIn constraint satisfaction, local consistency conditions are properties of constraint satisfaction problems related to the consistency of subsets of variables or constraints. They can be used to reduce the search space and make the problem easier to solve. Various kinds of local consistency conditions are leveraged, including node consistency, arc consistency, and path consistency. Every local consistency condition can be enforced by a transformation that changes the problem without changing its solutions.
Assignment problemThe assignment problem is a fundamental combinatorial optimization problem. In its most general form, the problem is as follows: The problem instance has a number of agents and a number of tasks. Any agent can be assigned to perform any task, incurring some cost that may vary depending on the agent-task assignment. It is required to perform as many tasks as possible by assigning at most one agent to each task and at most one task to each agent, in such a way that the total cost of the assignment is minimized.
Satisfiability modulo theoriesIn computer science and mathematical logic, satisfiability modulo theories (SMT) is the problem of determining whether a mathematical formula is satisfiable. It generalizes the Boolean satisfiability problem (SAT) to more complex formulas involving real numbers, integers, and/or various data structures such as lists, arrays, bit vectors, and strings. The name is derived from the fact that these expressions are interpreted within ("modulo") a certain formal theory in first-order logic with equality (often disallowing quantifiers).
Genetic algorithmIn computer science and operations research, a genetic algorithm (GA) is a metaheuristic inspired by the process of natural selection that belongs to the larger class of evolutionary algorithms (EA). Genetic algorithms are commonly used to generate high-quality solutions to optimization and search problems by relying on biologically inspired operators such as mutation, crossover and selection. Some examples of GA applications include optimizing decision trees for better performance, solving sudoku puzzles, hyperparameter optimization, causal inference, etc.
Topic-prominent languageA topic-prominent language is a language that organizes its syntax to emphasize the topic–comment structure of the sentence. The term is best known in American linguistics from Charles N. Li and Sandra Thompson, who distinguished topic-prominent languages, such as Korean and Japanese, from subject-prominent languages, such as English. In Li and Thompson's (1976) view, topic-prominent languages have morphology or syntax that highlights the distinction between the topic and the comment (what is said about the topic).
Subject–verb–object word orderIn linguistic typology, subject–verb–object (SVO) is a sentence structure where the subject comes first, the verb second, and the object third. Languages may be classified according to the dominant sequence of these elements in unmarked sentences (i.e., sentences in which an unusual word order is not used for emphasis). English is included in this group. An example is "Sam ate yogurt." SVO is the second-most common order by number of known languages, after SOV. Together, SVO and SOV account for more than 87% of the world's languages.
Random forestRandom forests or random decision forests is an ensemble learning method for classification, regression and other tasks that operates by constructing a multitude of decision trees at training time. For classification tasks, the output of the random forest is the class selected by most trees. For regression tasks, the mean or average prediction of the individual trees is returned. Random decision forests correct for decision trees' habit of overfitting to their training set.
Stable marriage problemIn mathematics, economics, and computer science, the stable marriage problem (also stable matching problem or SMP) is the problem of finding a stable matching between two equally sized sets of elements given an ordering of preferences for each element. A matching is a bijection from the elements of one set to the elements of the other set. A matching is not stable if: In other words, a matching is stable when there does not exist any pair (A, B) which both prefer each other to their current partner under the matching.
RandomnessIn common usage, randomness is the apparent or actual lack of definite pattern or predictability in information. A random sequence of events, symbols or steps often has no order and does not follow an intelligible pattern or combination. Individual random events are, by definition, unpredictable, but if the probability distribution is known, the frequency of different outcomes over repeated events (or "trials") is predictable. For example, when throwing two dice, the outcome of any particular roll is unpredictable, but a sum of 7 will tend to occur twice as often as 4.