Metal ions in aqueous solutionA metal ion in aqueous solution or aqua ion is a cation, dissolved in water, of chemical formula [M(H2O)n]z+. The solvation number, n, determined by a variety of experimental methods is 4 for Li+ and Be2+ and 6 for most elements in periods 3 and 4 of the periodic table. Lanthanide and actinide aqua ions have higher solvation numbers (often 8 to 9), with the highest known being 11 for Ac3+. The strength of the bonds between the metal ion and water molecules in the primary solvation shell increases with the electrical charge, z, on the metal ion and decreases as its ionic radius, r, increases.
Laboratory information management systemA laboratory information management system (LIMS), sometimes referred to as a laboratory information system (LIS) or laboratory management system (LMS), is a software-based solution with features that support a modern laboratory's operations. Key features include—but are not limited to—workflow and data tracking support, flexible architecture, and data exchange interfaces, which fully "support its use in regulated environments".
Period 2 elementA period 2 element is one of the chemical elements in the second row (or period) of the periodic table of the chemical elements. The periodic table is laid out in rows to illustrate recurring (periodic) trends in the chemical behavior of the elements as their atomic number increases; a new row is started when chemical behavior begins to repeat, creating columns of elements with similar properties. The second period contains the elements lithium, beryllium, boron, carbon, nitrogen, oxygen, fluorine, and neon.
Mariana TrenchThe Mariana Trench is an oceanic trench located in the western Pacific Ocean, about east of the Mariana Islands; it is the deepest oceanic trench on Earth. It is crescent-shaped and measures about in length and in width. The maximum known depth is at the southern end of a small slot-shaped valley in its floor known as the Challenger Deep. The deepest point of the trench is more than farther from sea level than the peak of Mount Everest.
AmphoterismIn chemistry, an amphoteric compound () is a molecule or ion that can react both as an acid and as a base. What exactly this can mean depends on which definitions of acids and bases are being used. One type of amphoteric species are amphiprotic molecules, which can either donate or accept a proton (). This is what "amphoteric" means in Brønsted–Lowry acid–base theory. For example, amino acids and proteins are amphiprotic molecules because of their amine () and carboxylic acid () groups.