MATHICSE Technical Report : Isogeometric analysis of high order partial differential equations on surfaces
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In this paper, we present an exact Riemann solver for one-dimensional systems of conservation laws. The method is based on an offline-online computational decomposition. During the offline stage, we generate an accurate surrogate model for the solution to ...
Isogeometric Analysis (IGA) is a computational methodology for the numerical approximation of Partial Differential Equations (PDEs). IGA is based on the isogeometric concept, for which the same basis functions, usually Non-Uniform Rational B-Splines (NURBS ...
We consider the numerical solution of second order Partial Differential Equations (PDEs) on lower dimensional manifolds, specifically on surfaces in three dimensional spaces. For the spatial approximation, we consider Isogeometric Analysis which facilitate ...
We consider the numerical approximation of geometric Partial Differential Equations (PDEs) defined on surfaces in the 3D space. In particular, we focus on the geometric PDEs deriving from the minimization of an energy functional by L2-gradient ow. We analy ...
Low-rank tensor approximation techniques attempt to mitigate the overwhelming complexity of linear algebra tasks arising from high-dimensional applications. In this work, we study the low-rank approximability of solutions to linear systems and eigenvalue p ...
We consider the numerical approximation of high order Partial Differential Equations (PDEs) defined on surfaces in the three dimensional space, with particular emphasis on closed surfaces. We consider computational domains that can be represented by B-spli ...
We numerically study the resistive method for the numerical approximation of elliptic PDEs. In particular we focus on the resistive method for weakly setting solution values in specific subdomains or interfaces in the domain. ...
We present a theoretical analysis of the CORSING (COmpRessed SolvING) method for the numerical approximation of partial differential equations based on compressed sensing. In particular, we show that the best s-term approximation of the weak solution of a ...
We propose an Isogeometric approach for smoothing on surfaces, namely estimating a function starting from noisy and discrete measurements. More precisely, we aim at estimating functions lying on a surface represented by NURBS, which are geometrical represe ...
This work is concerned with the numerical solution of large-scale linear matrix equations A1XB1T++AKXBKT=C. The most straightforward approach computes XRmxn from the solution of an mn x mn linear system, typically limiting the feasible values of m,n to a f ...