Publication

Truncated low-rank methods for solving general linear matrix equations

Daniel Kressner, Petar Sirkovic
2015
Journal paper
Abstract

This work is concerned with the numerical solution of large-scale linear matrix equations A1XB1T++AKXBKT=C. The most straightforward approach computes XRmxn from the solution of an mn x mn linear system, typically limiting the feasible values of m,n to a few hundreds at most. Our new approach exploits the fact that X can often be well approximated by a low-rank matrix. It combines greedy low-rank techniques with Galerkin projection and preconditioned gradients. In turn, only linear systems of size m x m and n x n need to be solved. Moreover, these linear systems inherit the sparsity of the coefficient matrices, which allows to address linear matrix equations as large as m = n = O(10(5)). Numerical experiments demonstrate that the proposed methods perform well for generalized Lyapunov equations. Even for the case of standard Lyapunov equations, our methods can be advantageous, as we do not need to assume that C has low rank. Copyright (c) 2015 John Wiley & Sons, Ltd.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.