MATHICSE Technical Report : Isogeometric analysis of high order partial differential equations on surfaces
Publications associées (91)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
We present a theoretical analysis of the CORSING (COmpRessed SolvING) method for the numerical approximation of partial differential equations based on compressed sensing. In particular, we show that the best s-term approximation of the weak solution of a ...
We numerically study the resistive method for the numerical approximation of elliptic PDEs. In particular we focus on the resistive method for weakly setting solution values in specific subdomains or interfaces in the domain. ...
Low-rank tensor approximation techniques attempt to mitigate the overwhelming complexity of linear algebra tasks arising from high-dimensional applications. In this work, we study the low-rank approximability of solutions to linear systems and eigenvalue p ...
We consider the numerical approximation of geometric Partial Differential Equations (PDEs) defined on surfaces in the 3D space. In particular, we focus on the geometric PDEs deriving from the minimization of an energy functional by L2-gradient ow. We analy ...
Isogeometric Analysis (IGA) is a computational methodology for the numerical approximation of Partial Differential Equations (PDEs). IGA is based on the isogeometric concept, for which the same basis functions, usually Non-Uniform Rational B-Splines (NURBS ...
We propose an Isogeometric approach for smoothing on surfaces, namely estimating a function starting from noisy and discrete measurements. More precisely, we aim at estimating functions lying on a surface represented by NURBS, which are geometrical represe ...
We consider the numerical approximation of high order Partial Differential Equations (PDEs) defined on surfaces in the three dimensional space, with particular emphasis on closed surfaces. We consider computational domains that can be represented by B-spli ...
We consider the numerical solution of second order Partial Differential Equations (PDEs) on lower dimensional manifolds, specifically on surfaces in three dimensional spaces. For the spatial approximation, we consider Isogeometric Analysis which facilitate ...
In this paper, we present an exact Riemann solver for one-dimensional systems of conservation laws. The method is based on an offline-online computational decomposition. During the offline stage, we generate an accurate surrogate model for the solution to ...
This work is concerned with the numerical solution of large-scale linear matrix equations A1XB1T++AKXBKT=C. The most straightforward approach computes XRmxn from the solution of an mn x mn linear system, typically limiting the feasible values of m,n to a f ...