MATHICSE Technical Report : Isogeometric analysis of high order partial differential equations on surfaces
Related publications (91)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
A point-wise approach that can be used efficiently in the numerical solution of Electric Field Integral Equations is introduced. The algorithm is based on the so-called magic distance concept, which defines exactly the point-to-point equivalent of a four-d ...
Timber Fabric structures (TFS) initiate from a correspondence between textile principles and recent industrial developments in producing cross laminated timber panels. Several individual timber strips are interlaced according to a pattern and result in an ...
This article proposes a numerical model for microfluidic two-phase flows in flat channels, also called Hele-Shaw cells. The initially three-dimensional problem is simplified to two-dimensions by depth averaging in the thin direction. The 2D partial differe ...
The aim of this work is the development of a geometrical multiscale framework for the simulation of the human cardiovascular system under either physiological or pathological conditions. More precisely, we devise numerical algorithms for the partitioned so ...
Isogeometric analysis (IGA) is a computational methodology recently developed to numerically approximate Partial Differential Equation (PDEs). It is based on the isogeometric paradigm, for which the same basis functions used to represent the geometry are t ...
A new finite element method for the efficient discretization of elliptic homogenization problems is proposed. These problems, characterized by data varying over a wide range of scales cannot be easily solved by classical numerical methods that need mesh re ...
In this paper we present a compact review on the mostly used techniques for computational reduction in numerical approximation of partial differential equations. We highlight the common features of these techniques and provide a detailed presentation of th ...
Many real-world systems are intrinsically nonlinear. This thesis proposes various algorithms for designing control laws for input-affine single-input nonlinear systems. These algorithms, which are based on the concept of quotients used in nonlinear control ...
The aim of the project is double: to understand the flexibility of the Isogeometric Analysis tools through the solution of some PDEs problems; to test the improvement in the computational time given by a partial loops vectorization at compile-time of the L ...
This work is concerned with numerical methods for matrix eigenvalue problems that are nonlinear in the eigenvalue parameter. In particular, we focus on eigenvalue problems for which the evaluation of the matrix-valued function is computationally expensive. ...