Comparison of permutationally invariant polynomials, neural networks, and Gaussian approximation potentials in representing water interactions through many-body expansions
Related publications (52)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In recent years, we have been witnessing a paradigm shift in computational materials science. In fact, traditional methods, mostly developed in the second half of the XXth century, are being complemented, extended, and sometimes even completely replaced by ...
The ground-breaking works of Weinberg have opened the way to calculations of atomic nuclei that are based on systematically improvable Hamiltonians. Solving the associated many-body Schrodinger equation involves non-trivial difficulties, due to the non-per ...
Over the last two decades, many technological and scientific discoveries, ranging from the development of materials for energy conversion and storage through the design of new drugs, have been accelerated by the use of preliminary in silico experiments, to ...
EPFL2021
, ,
Non-covalent bonding patterns are commonly harvested as a design principle in the field of catalysis, supramolecular chemistry, and functional materials to name a few. Yet, their computational description generally neglects finite temperature and environme ...
We present a generally applicable computational framework for the efficient and accurate characterization of molecular structural patterns and acid properties in an explicit solvent using H2O2 and CH3SO3H in phenol as an example. To address the challenges ...
AMER CHEMICAL SOC2020
Over the past decade, interatomic potentials based on machine learning (ML) techniques have become an indispensable tool in the atomic-scale modeling of materials. Trained on energies and forces obtained from electronic-structure calculations, they inherit ...
SPRINGER HEIDELBERG2022
,
Tris(hydroxymethyl)aminomethane (Tris) has been used as the buffer in bioactivity testing for over two decades and has become a standard choice for the scientific community. While it is believed to be non-interacting, the extent of its interactions with ti ...
Amsterdam2021
Molecular simulations allow to investigate the behaviour of materials at the atomistic level, shedding light on phenomena that cannot be directly observed in experiments. Accurate results can be obtained with ab initio methods, while simulations of large-s ...
Cavity quantum electrodynamics (QED) manipulates the coupling of light with matter, and allows several emitters to couple coherently with one light mode1. However, even in a many-body system, the light–matter coupling mechanism has so far been restricted t ...
We address the many-body self-interaction in relation to polarons in density functional theory. Our study provides (i) a unified theoretical framework encompassing many-body and one-body forms of self-interaction and (ii) an efficient semilocal scheme for ...