Method of synthesis of an electrode for use as a catalyst of oxygen evolution reaction
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Clean energy is highly needed at this time when the energy requirements are rapidly increasing. The observed increasing energy requirement are largely due to continued industrialization and global population explosion. The current means of energy source is ...
Designing cost-effective electrocatalysts for electrochemical water splitting to generate the hydrogen energy as a future energy source is pivotal. An excellent catalyst should show high catalytic activity for both hydrogen evolution reaction (HER) and oxy ...
Hydrogen (H-2) has a significant potential to enable the global energy transition from the current fossil-dominant system to a clean, sustainable, and low-carbon energy system. While presently global H-2 production is predominated by fossil-fuel feedstocks ...
The practical implementation of photoelectrochemical devices for hydrogen generation is limited by their short lifetimes. Understanding the factors affecting the stability of the heterogeneous photoelectrodes is required to formulate degradation mitigation ...
Water splitting offers the opportunity for storing solar energy and, thus, producing carbon-neutral and renewable solar fuels. The process, known as artificial photosynthesis, is limited by the electrocatalytic conversion of water into molecular oxygen. El ...
Utilizing earth-abundant metals to design economical and efficient electrocatalysts for cathodic hydrogen evolution reaction (HER) and anodic oxygen evolution reaction (OER) is critical for acquiring clean hydrogen energy by the electrochemical overall wat ...
Nowadays, mankind is facing an important energy challenge. Depletion in fossil fuels reserves and increasing energy demand, coupled with the problematic greenhouse effect induced by massive anthropogenic release of carbon dioxide into the atmosphere, are d ...
Photoelectrochemical (PEC) water splitting devices are envisioned to play a key role in the societal transition towards sustainable energy sources. In this context, multinary metal oxide semiconductors are the most promising candidates for the role of phot ...
Water electrolysis is an advanced and sustainable energy conversion technology used to generate H-2. However, the low efficiency of the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) hampers the overall water-splitting catalytic perf ...
Efficient and low-cost electrocatalysts for oxygen evolution reaction (OER), particularly in neutral conditions, are of significant importance for renewable energy technologies such as CO2 reduction and seawater splitting electrolysis. High-valent transiti ...